The vertebrate adenohypophysis forms as a placode at the anterior margin of the neural plate, requiring both hedgehog (Hh) and fibroblast growth factor (Fgf) mediated cell-cell signaling for induction and survival of endocrine cell types. Using small molecule inhibitors to modulate signaling levels during zebrafish development we show that graded Hh and Fgf signaling independently help establish the two subdomains of the adenohypophysis, the anteriorly located pars distalis (PD) and the posterior pars intermedia (PI). High levels of Hh signaling are required for formation of the PD and differentiation of anterior endocrine cell types, whereas lower levels of Hh signaling are required for formation of the PI and differentiation of posterior endocrine cell types. In contrast, high Fgf signaling levels are required for formation of the PI and posterior endocrine cell differentiation, whereas anterior regions require lower levels of Fgf signaling. Based on live observations and marker analyses, we show that the PD forms first at the midline closest to the central nervous system source of Sonic hedgehog. In contrast the PI appears to form from more lateral/posterior cells close to a central nervous system source of Fgf3. Together our data show that graded Hh and Fgf signaling independently direct induction of the PD and PI and help establish endocrine cell fates along the anterior/posterior axis of the zebrafish adenohypophysis. These data suggest that there are distinct origins and signaling requirements for the PD and PI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553376 | PMC |
http://dx.doi.org/10.1210/en.2008-0315 | DOI Listing |
PLoS One
January 2025
Department of Anatomy, University Hospital Essen, Essen, Germany.
Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.
View Article and Find Full Text PDFEndocrine
January 2025
Department of Health Management, Chronic Health Management Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
Background: The impact of fatty liver disease on lumbar bone mineral density (BMD) represents an intriguing area of study, particularly in light of established research linking obesity to bone metabolism. However, there remains limited investigation into the correlation between quantifying liver fat content (LFC) and lumbar BMD among overweight and obese populations, particularly within the Chinese demographic. This study aims to accurately quantify LFC and investigate its association with lumbar BMD in overweight or obese individuals.
View Article and Find Full Text PDFEndocrine
January 2025
Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.
View Article and Find Full Text PDFThyroid
January 2025
Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA.
Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A).
View Article and Find Full Text PDFInvasive Lobular Carcinoma (ILC), a distinct subtype of breast cancer is hallmarked by E-Cadherin loss, slow proliferation, and strong hormone receptor positivity. ILC faces significant challenges in clinical management due to advanced stage at diagnosis, late recurrence, and development of resistance to endocrine therapy - a cornerstone of ILC treatment. To elucidate the mechanisms underlying endocrine resistance in ILC, ILC cell lines (MDA-MB-134-VI, SUM44PE) were generated to be resistant to tamoxifen, a selective estrogen receptor modulator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!