Background: Recent evidence indicates that new neurons are produced in the adult hippocampus, and play a functional role in cognitive processes such as learning and memory. In animals, new neuron production is suppressed by increasing age, gamma-aminobutyric acid receptor activity, reductions in basal forebrain activity and brain norepinephrine levels, and decreased environmental stimuli. Similarities between these effects and those of anesthetic administration suggest that anesthetics may modulate new cell production, and raise the possibility that postoperative cognitive dysfunction may result, in part, from anesthetic-induced suppression of adult neurogenesis. To test this hypothesis, we investigated the effects of prolonged anesthesia with four different anesthetics on hippocampal cell proliferation in young and older rats.
Methods: Young (approximately 3 mo) and older, middle-aged (approximately 12 mo) male Sprague-Dawley rats received one of four anesthetics (propofol, isoflurane, dexmedetomidine, and ketamine) for 8 h. Rats breathed spontaneously, and anesthesia was titrated to loss of righting reflex and tolerance of clip-style pulse oximetry. Six hours into the anesthetic, rats received 200 mg/kg bromodeoxyuridine (BrdU) intraperitoneally and were killed hours later. Frozen hippocampal sections were collected and processed for BrdU using an immunoperoxidase technique. BrdU(+) cells in the dentate gyrus were then counted, and compared with unanesthetized controls to determine the degree of new cell production. All four anesthetics were given to young rats. Older rats received isoflurane and ketamine, and also received isoflurane during their dark phase.
Results: Forty-two young, and 26 older, middle-aged rats were studied. When compared with controls, prolonged anesthesia in young rats with any drug had no effect on the number of BrdU(+) cells. BrdU labeling was also unaffected in older rats given isoflurane for 8 h during the light phase. Older rats had significantly lower BrdU(+) cell counts than younger rats. In older rats, ketamine anesthesia reduced BrdU(+) cell counts by 26% when compared with unanesthetized controls. Older rats given isoflurane for 8 h during their dark phase demonstrated no difference in BrdU labeling when compared with unanesthetized controls.
Conclusion: Despite using multiple, mechanistically distinct drugs, we found no effect of prolonged anesthesia on adult hippocampal cell proliferation in young rats, a slight suppressive effect of ketamine in older rats, and no circadian effect with isoflurane. These data indicate that anesthetics are unlikely to alter cell proliferation, and by extension that anesthetic-induced inhibition of cell proliferation is unlikely to play a major role in postoperative cognitive impairment. The contrast between our findings, current concepts of anesthetic action, and known modifiers of cell proliferation suggest an incomplete understanding of the pharmacological and behavioral factors governing new neuron production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/ane.0b013e31816f2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!