Recent studies have revealed important and versatile roles that Archaea play in a wide variety of environmental processes on Earth. In this study, we investigated the abundance and diversity of archaeal communities in lake water and a 5 m sediment core collected from Qinghai Lake on the Tibetan Plateau, north-western China. An integrated approach was employed including geochemistry, quantitative polymerase chain reaction (Q-PCR) and 16S rRNA gene analysis. Here, we show that Archaea dominated the prokaryotic community in the lake sediments. Members of putative marine benthic groups [Marine Benthic Group (MBG)-B, -C and -D] and Miscellaneous Crenarchaeotic Group (MCG) were dominant, many of which were previously reported to be predominantly present in deep-sea environments. These results demonstrate that these groups are not limited to marine sediments. Despite their ubiquitous presence in aquatic environments, metabolic functions of these important groups largely remain unknown. Whereas many of these groups (such as MBG-B and -D) have typically been found in methane-hydrate deposits in marine environments, our carbon isotopic and molecular results from Qinghai Lake sediments indicate a lacustrine origin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2008.01661.xDOI Listing

Publication Analysis

Top Keywords

qinghai lake
12
putative marine
8
marine benthic
8
north-western china
8
lake sediments
8
lake
5
dominance putative
4
marine
4
benthic archaea
4
archaea qinghai
4

Similar Publications

Organic Molecules Induce the Formation of Hopper-Like NaCl Crystals under Rapid Evaporation As Microcatalytic Reactors To Facilitate Micro/Nanoplastic Degradation.

Nano Lett

January 2025

Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China.

As representative examples of inorganic ionic crystals, NaCl and KCl usually form cubes during the natural evaporation process. Herein, we report the hopper-like NaCl and KCl crystals formed on the iron surface under rapid vacuum evaporation aided by organic molecules. Theoretical and experimental results indicate that it is attributed to the organic molecules alternating adsorption between {100} and {110} surfaces instead of adsorbing a single surface, as well as the fast crystal growth rate.

View Article and Find Full Text PDF

Droplet evaporation on solid substrates is a ubiquitous phenomenon and is relevant in many natural and industrial processes. Whereas it has been reported that the evaporation process is sped up on soft substrates compared with that on hard substrates, no attempt has been made in exploring how substrate stretching affects droplet evaporation and evaporative deposition patterns. Here, we systematically investigate the contact line dynamics of droplets evaporating on substrates with different stiffnesses and stretching ratios and the structures of the evaporative deposition patterns of nanoparticles.

View Article and Find Full Text PDF

Internal instability of embankment soils under seepage can occur in two distinct ways: suffusion and suffosion. Suffusion involves the removal of fine particles from the matrix without causing significant disturbance to the soil skeleton, while suffosion is characterized by the movement of fine particles accompanied by skeleton collapse or deformation. In terms of dam safety, suffosion poses a greater threat than suffusion.

View Article and Find Full Text PDF

Study on Synergistically Improving Corrosion Resistance of Microarc Oxidation Coating on Magnesium Alloy by Loading of Sodium Tungstate and Silane Treatment.

Materials (Basel)

January 2025

Qinghai Provincial Key Laboratory of Nanomaterials and Technology, School of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.

Sodium tungstate (NaWO) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. The phase composition of the coating was inspected using XRD.

View Article and Find Full Text PDF

Research progress on environmental behavior of arsenic in Qinghai-Tibet Plateau soil.

J Environ Sci (China)

July 2025

Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China. Electronic address:

The Qinghai-Tibet Plateau, with its high altitude and cold climate, is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic (As) levels in the soil, largely due to its rich mineral and geothermal resources. This review provides a comprehensive analysis of As content, focusing on its distribution, environmental migration, and transformation behavior across the plateau. The review further evaluates the distribution of As in different functional areas, revealing that geothermal fields (107.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!