Addition of molasses and urea was tested as a means of stimulating microbial urea hydrolysis in the Eastern Snake River Plain Aquifer in Idaho. Ureolysis is an integral component of a novel remediation approach for divalent trace metal and radionuclide contaminants in groundwater and associated geomedia, where the contaminants are immobilized by coprecipitation in calcite. Generation of carbonate alkalinity from ureolysis promotes calcite precipitation. In calcite-saturated aquifers, this represents a potential long-term contaminant sequestration mechanism. In a single-well experiment, dilute molasses was injected three times over two weeks to promote overall microbial growth, followed by one urea injection. With molasses addition, total cell numbers in the groundwater increased 1-2 orders of magnitude. Estimated ureolysis rates in recovered groundwater samples increased from < 0.1 to > 25 nmol L(-1) hr(-1). A quantitative PCR assay for the bacterial ureC gene indicated that urease gene numbers increased up to 170 times above pre-injection levels. Following urea injection, calcite precipitates were recovered. Estimated values for an in situ first order ureolysis rate constant ranged from 0.016 to 0.057 d(-1). Although collateral impacts such as reduced permeability were observed, overall results indicated the viability of manipulating biogeochemical processes to promote contaminant sequestration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es702643gDOI Listing

Publication Analysis

Top Keywords

microbial urea
8
urea hydrolysis
8
calcite precipitation
8
contaminant sequestration
8
urea injection
8
urea
5
stimulation microbial
4
groundwater
4
hydrolysis groundwater
4
groundwater enhance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!