Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.

Environ Sci Technol

Department of Geography and Environmental Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

Published: April 2008

AI Article Synopsis

  • Increased amounts of carbon nanotubes (CNTs) in the environment affect how contaminants, like naphthalene, are transported and absorbed.
  • Surface oxides on multiwalled CNTs (MWCNTs) significantly reduce their ability to adsorb naphthalene, with higher oxygen content leading to a substantial decrease in sorption capacity.
  • The study underscores the importance of surface chemistry in influencing the environmental behavior of CNTs, particularly how alterations in their structure can impact their interactions with pollutants.

Article Abstract

As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es702363eDOI Listing

Publication Analysis

Top Keywords

surface oxides
16
influence surface
8
carbon nanotubes
8
sorption properties
8
maximum adsorption
8
adsorption capacity
8
surface
7
sorption
6
oxides
4
oxides adsorption
4

Similar Publications

The storage and release of energy is an economic cornerstone. In quantum dots (QDs), energy storage is mostly governed by their surfaces, in particular by surface chemistry and faceting. The impact of surface free energy (SFE) through surface faceting has already been studied in QDs.

View Article and Find Full Text PDF

Halide perovskites have attracted recent attention as thermoelectric materials due to their low thermal conductivity combined with good charge transport characteristics. The tin halide perovskites hold the highest within metal halide perovskites and offer lower toxicity than lead-containing perovskites that are well-known for photovoltaics. In this study, we partially substitute Sn (II) with Ge (II) to form mixed metal CsSnGeI perovskite thin films that have substantially improved stability, remaining in the black orthorhombic phase after hours of ambient air exposure.

View Article and Find Full Text PDF

Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMnO toward Long-Life Lithium-Ion Batteries.

Nano Lett

January 2025

Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.

Spinel lithium manganese oxide (LiMnO, LMO) is a promising cathode material with nontoxicity, high operating voltage, and low cost. However, structural collapse during battery cycling ─ caused by Mn dissolution and the Jahn-Teller effect ─ is a critical disadvantage, reducing cycle retention, particularly at high temperatures. In this study, to solve these critical issues, we introduce Cu(HITP) (CuHITP; HITP = 2,3,6,7,10,11-hexaiminotriphenylene), a conductive two-dimensional (2D) metal-organic framework (MOF) as a surface coating material.

View Article and Find Full Text PDF

A localized conversion of aluminum into transparent aluminum oxide by droplet-scale anodization is demonstrated in this work. The anodized region can be contained and controlled on the basis of the electrowetting response of the droplet. A highly uniform and transparent anodized spot was achieved using an anodization voltage of 2 V for 10 min.

View Article and Find Full Text PDF

Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect.

Adv Mater

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.

Amid the burgeoning demand for electrochemical energy storage and neuromorphic computing, fast ion transport behavior has attracted widespread attention at both fundamental and practical levels. Here, based on the nanoconfined channel of graphene oxide laminar membranes (GOLMs), the lithium ionic conductivity typically exceeding 10 mS cm is realized, one to three orders of magnitude higher than traditional liquid or solid lithium-ion electrolyte. Specifically, the nanoconfined lithium hexafluorophosphate (LiPF)-ethylene carbonate (EC)/ dimethyl carbonate (DMC) electrolyte demonstrates the ionic conductivity of 170 mS cm, outperforming the bulk counterpart by ≈16 fold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!