Objective: The onset of neurological signs in experimental autoimmune encephalomyelitis is tightly associated with infiltration and reactivation of T cells in the central nervous system. The anatomic localization of the initial T cell-antigen-presenting cell (APC) interactions leading to reactivation of T cells in the central nervous system is, however, still unclear. We hypothesized that activated CD4(+) T cells gain direct access to the subarachnoid space and become reactivated on encounter with cognate antigen in this compartment.
Methods: C57Bl/6 mice were immunized with MOG35-55, and interactions between CD4(+) T cells and major histocompatibility class II+ APCs in the subarachnoid space were investigated using flow cytometry, confocal microscopy of leptomeningeal whole-mount preparations, time-lapse microscopy of leptomeningeal explants, and in vitro proliferation assays.
Results: CD4(+) T cells, polarized to produce Th1/Th17 cytokines, accumulated in the subarachnoid space early during the course of experimental autoimmune encephalomyelitis, before CD4(+) T cells were detected in the spinal cord parenchyma. At this time point, leptomeningeal but not parenchymal CD4(+) T cells incorporated bromodeoxyuridine, indicating local proliferation of CD4(+) T cells in the subarachnoid space. Time-lapse microscopy indicated that these CD4(+) T cells actively scanned the tissue and interacted with local major histocompatibility class II+ APCs, resulting in long-lasting interactions between CD4(+) T cells and major histocompatibility class II+ APCs, suggestive of immunological synapses.
Interpretation: These results support the concept that immune surveillance of the central nervous system involves the subarachnoid space and indicate that the leptomeninges play an important role in experimental autoimmune encephalomyelitis initiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305810 | PMC |
http://dx.doi.org/10.1002/ana.21379 | DOI Listing |
J Infect Dev Ctries
December 2024
Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
Co-inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), known as immune checkpoints, regulate the activity of T and myeloid cells during chronic viral infections and are well-established for their roles in cancer therapy. However, their involvement in chronic bacterial infections, particularly those caused by pathogens endemic to developing countries, such as Mycobacterium tuberculosis (Mtb), remains incompletely understood. Cytokine microenvironment determines the expression of co-inhibitory molecules in tuberculosis: Results indicate that the cytokine IL-12, in the presence of Mtb antigens, can enhance the expression of co-inhibitory molecules while preserving the effector and memory phenotypes of CD4+ T cells.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.
Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.
Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.
Biogerontology
January 2025
School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK.
The collective detrimental impact of aged naive lymphocytes and thymus atrophy on the aging of the immune system can be mitigated by exercise. Hence, this research aims to explore the effects of three methods of water-based exercises on immune system aging and thymus atrophy in elderly rats. Thirty-two 24-month-old rats, with an average weight of 320 ± 5 g, were randomly allocated into four groups of endurance training (n = 8), resistance training (n = 8), combined training (n = 8), and control (n = 8).
View Article and Find Full Text PDFImmunol Res
January 2025
Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India.
Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4 T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Microbiology and Immunology, Medical University of South Carolina; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina;
Chimeric antigen receptor (CAR) T-cell therapy has reshaped the face of cancer treatment, leading to record remission rates in previously incurable hematological cancers. These successes have spurred interest in adapting the CAR platform to a small yet pivotal subset of CD4 T cells primarily responsible for regulating and inhibiting the immune response, regulatory T cells (Tregs). The ability to redirect Tregs' immunosuppressive activity to any extracellular target has enormous implications for creating cell therapies for autoimmune disease, organ transplant rejection, and graft-versus-host disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!