Rheumatoid arthritis (RA) synovial fibroblasts produce matrix metaloproteinases (MMPs), which destroy cartilage and bone in RA joint. Tumor necrosis factor-alpha (TNF-alpha) is one of the most important mediator leading to MMP production in RA synovial fibroblasts. Here we show that epigallocatechin-3-Gallate (EGCG) suppresses TNF-alpha-induced production of MMP-1 and MMP-3 in RA synovial fibroblasts, which was accompanied by inhibition of mitogen activated protein kinase (MAPK) and activator protein-1 (AP-1) pathways. EGCG treatment resulted in dose-dependent inhibition of TNF-alpha-induced production of MMP-1 and MMP-3 at the protein and mRNA levels in RA synovial fibroblast. EGCG treatment also inhibited TNF-alpha-induced phosphorylation of MAPKs, such as ERK1/2, p38, JNK. Electrophoretic mobility shift assay revealed that EGCG inhibits binding of AP-1 proteins to its response elements in synovial fibroblast treated. Thus, EGCG may play a role in regulating inflammation and bone destruction in RA patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00296-008-0597-5 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.
View Article and Find Full Text PDFCytokine
January 2025
Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Department of Pathology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany. Electronic address:
Interleukin-11 (IL-11) is a member of the IL-6 family of cytokines and possesses both pro- and anti-inflammatory properties. IL-11 activates its target cells via binding to a membrane-bound IL-11R and subsequent formation of a homodimer of the signal-transducing receptor gp130. Thus, the expression pattern of the IL-11R determines which cells can be activated by IL-11.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, China. Electronic address:
The excessive proliferation of fibroblast-like synoviocytes (FLS) leads to synovial hyperplasia, a key pathological hallmark of rheumatoid arthritis (RA). Eupalinolide B (EB), a sesquiterpene lactone of Eupatorium lindleyanum DC., has anti-inflammatory effects and anti-proliferative activity in tumor cells.
View Article and Find Full Text PDFJ Transl Autoimmun
June 2025
Department of Biomedicine, Aarhus University, Denmark.
The family of heterodimeric CD11/CD18 integrins facilitate leukocyte adhesion and migration in a wide range of normal physiologic responses, as well as in the pathology of inflammatory diseases. Soluble CD18 (sCD18) is found mainly in complexes with hydrodynamic radii of 5 and 7.2 nm, suggesting a compositional difference.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland.
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint damage and physical dysfunction. The pathogenesis of RA is highly complex, involving genetic, epigenetic, immune, and metabolic factors, among others. Over the years, research has highlighted the importance of non-coding RNAs (ncRNAs) in regulating gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!