Purpose: To assess susceptibility related signal decay in lung tissue and to measure the influence of body positioning, together with inspiration and expiration, as well as oxygen inhalation. T2* maps and line shape maps of lung parenchyma were derived from datasets acquired at 0.2 T and compared with findings at 1.5 T. The line shape maps allow for a visualization of the intravoxel frequency distribution of lung parenchyma.
Materials And Methods: A multiecho spoiled gradient-echo sequence with 16 echoes was implemented both on a 0.2 T [repetition time (TR) = 100 milliseconds, echo time (TE)1 = 2.15 milliseconds, DeltaTE = 2.94 milliseconds, flip angle 30 degrees] and on a 1.5 T magnetic resonance scanner (TR = 100 milliseconds, TE1 = 1.25 milliseconds, DeltaTE = 1.65 milliseconds, flip angle 30 degrees). Sagittal datasets were recorded in 8 healthy volunteers at 0.2 T in supine position under maximal expiration and inspiration and during oxygen breathing. Additional measurements were performed after 20 minutes inside the scanner in supine position and after prone repositioning. In 2 volunteers, further datasets were acquired at 1.5 T. Color-encoded T2* maps and full-width-at-half-maximum (FWHM) maps of the frequency distribution were computed on a pixel-by-pixel basis. T2* maps were generated by mono-exponential fitting and, additionally, with an extended nonexponential fitting approach. The FWHM maps were calculated with a model-free approach using a discrete Fast Fourier Transformation.
Results: A notably slower T2* decay was found at 0.2 T (T2*: 5.9-11.8 milliseconds) when compared with 1.5 T (T2*: 1.0-1.4 milliseconds), allowing for the measurement of up to 6 to 8 gradient echoes above the noise level. The T2* maps and the FWHM maps computed from the datasets acquired at 0.2 T allowed regional comparison of the derived parameters. If volunteers were positioned in supine position, expiration resulted in a T2* of 10.9 +/- 1.0 milliseconds and a FWHM of 47.1 +/- 4.0 Hz in the dorsal lung. Significant changes (P < 0.05) were found, eg, in the ventral lung in expiration (T2*: 7.5 +/- 0.8, FWHM: 76.7 +/- 11.2) versus dorsal lung in expiration, in the dorsal lung in inspiration (T2*: 8.4 +/- 1.0, FWHM: 67.8 +/- 12.5) versus dorsal lung in expiration, in the dorsal lung during oxygen breathing (T2*: 8.7 +/- 1.1, FWHM: 52.2 +/- 5.2) versus dorsal lung while breathing room air, and in the dorsal lung in prone position (T2*: 8.5 +/- 0.6, FWHM: 67.0 +/- 9.2) versus dorsal lung in supine position.
Conclusion: The proposed method allows for the computation of color-encoded T2* maps and FWHM maps of lung parenchyma in good image quality using datasets acquired at 0.2 T. The technique is robust and sensitive to physiological changes of lung magnetic resonance properties, eg, due to the type of body positioning or oxygen breathing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RLI.0b013e3181690191 | DOI Listing |
Physiol Meas
January 2025
Department of Anesthesiology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Xuhui, Shanghai, 200032, China, Shanghai, Shanghai, 200032, CHINA.
Abstract Objective: Abnormal regional lung ventilation can lead to undesirable outcomes during the induction of anesthesia. Head rotated ventilation has proven to change the airflow of upper airway tract and be effective in increasing the tidal volume. This study aimed to investigate the influence of head rotated mask ventilation on regional ventilation distribution during the induction phase of anesthesia.
View Article and Find Full Text PDFCureus
December 2024
Department of Radiological Technology, Fujieda Municipal General Hospital, Fujieda, JPN.
Purpose This study aimed to clarify which positions are beneficial for patients with pathological lung diseases, such as acute respiratory distress syndrome, by obtaining lung ventilation and deformable vector field (DVF) images using Deformable Image Registration (DIR). Methods Thirteen healthy volunteers (5 female, 8 male) provided informed consent to participate to observe changes in normal lungs. DIR imaging was processed using the B-spline algorithm to obtain BH-CTVI (inhale, exhale) in four body positions (supine, prone, right lateral, left lateral) using DIR-based breath-hold CT ventilation imaging (BH-CTVI).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.
Although alveolar hyperoxia exacerbates lung injury, clinical studies have failed to demonstrate the beneficial effects of lowering the fraction of inspired oxygen (FO) in patients with acute respiratory distress syndrome (ARDS). Atelectasis, which is commonly observed in ARDS, not only leads to hypoxemia but also contributes to lung injury through hypoxia-induced alveolar tissue inflammation. Therefore, it is possible that excessively low FO may enhance hypoxia-induced inflammation in atelectasis, and raising FO to an appropriate level may be a reasonable strategy for its mitigation.
View Article and Find Full Text PDFVet Res
January 2025
Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC scoring methods.
View Article and Find Full Text PDFPhysiol Meas
January 2025
Department of Critical Care Medicine, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Dongcheng-qu, 100730, CHINA.
Prone positioning is a therapeutic strategy for severe Acute Respiratory Distress Syndrome (ARDS). In COVID-19-associated ARDS (CARDS), the application of prone position has shown varying responses, influenced by factors such as lung recruitability and SARS-CoV-2-induced pulmonary endothelial dysfunction. This study aimed to compare the early impact of pronation on lung ventilation-perfusion matching (VQmatch) in CARDS and non-COVID-19 ARDS patients (non-CARDS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!