Tail-anchored proteins form a distinct class of membrane proteins that are found in all intracellular membranes exposed to the cytosol. These proteins have a single membrane insertion sequence at their C-terminus and display a large N-terminal portion to the cytosol. Despite their importance for various cellular processes, the mechanisms by which these proteins are recognized at and inserted into their corresponding target membrane remained largely unclear. Here we address this issue and investigate the biogenesis of tail-anchored proteins residing in the mitochondrial outer membrane. To that goal we developed a highly specific assay to monitor the membrane insertion of the model tail-anchored protein Fis1. Using this assay, we show that in contrast to all other import pathways in yeast mitochondria, none of the import components at the outer membrane is involved in the insertion process of Fis1. Both the steady-state levels of Fis1 and its in vitro insertion into isolated mitochondria were unaffected when mitochondria mutated in known import factors were analyzed. Fis1 was inserted into lipid vesicles, and importantly, elevated ergosterol contents in these vesicles inhibited this insertion. Collectively, these results suggest that Fis1 is inserted into mitochondria in a novel pathway where the unique lipid composition of the mitochondrial outer membrane contributes to the selectivity of the process. Thus, this work demonstrates a novel role for lipids in the biogenesis of mitochondrial protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.024034 | DOI Listing |
J Biol Inorg Chem
December 2024
Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, USA.
The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biomedical Sciences, Suzhou Chien-shiung Institute of Technology, Suzhou, 215411, People's Republic of China.
Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China.
Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin, China, Tianjin Key Laboratory of Ocular Trauma, Tianjin, China, Tianjin Institute of Eye Health and Eye Diseases, Tianjin, China, China-UK "Belt and Road" Ophthalmology. Electronic address:
Background: This study investigated the association between photoreceptor structural restoration and visual function outcomes in patients undergoing surgery for closed macular holes (MHs). Using adaptive optics scanning laser ophthalmoscopy (AOSLO) and microperimetry, we aimed to provide a more detailed understanding of photoreceptor recovery and visual improvement in closed MHs.
Methods: We conducted a retrospective observational study of 31 eyes of 28 patients who underwent vitrectomy with internal limiting membrane (ILM) peeling to treat idiopathic MHs.
Cell Chem Biol
December 2024
Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!