Protein kinase B/Akt activity is involved in renal TGF-beta1-driven epithelial-mesenchymal transition in vitro and in vivo.

Am J Physiol Renal Physiol

UCD Diabetic Research Centre, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.

Published: July 2008

The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494512PMC
http://dx.doi.org/10.1152/ajprenal.00548.2007DOI Listing

Publication Analysis

Top Keywords

pkb/akt activation
16
pi3k pkb/akt
12
pkb/akt
9
protein kinase
8
diabetic nephropathy
8
smad3 phosphorylation
8
tgf-beta1
5
activation
5
phosphorylation
5
kinase b/akt
4

Similar Publications

Background/aim: Soft tissue sarcoma (STS) is a mesenchymal tumor affecting multiple organs in dogs. Previous studies identified activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB, AKT) pathway in canine STS cell lines and clinical samples, but the underlying mechanism remains unclear. This study investigated PTEN loss, PIK3CA mutation, and EGFR over-expression as potential drivers of PI3K/AKT pathway activation in STS.

View Article and Find Full Text PDF

Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).

View Article and Find Full Text PDF

The Mitochondrial Fusion Promoter M1 Mitigates Cigarette Smoke-Induced Airway Inflammation and Oxidative Stress via the PI3K-AKT Signaling Pathway.

Lung

December 2024

State Key Laboratory of Biotherapy of China, Division of Pulmonary Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China.

Purpose: This study investigated the efficacy and underlying mechanism of the mitochondrial fusion promoter M1 in mitigating cigarette smoking (CS)-induced airway inflammation and oxidative stress both in vitro and in vivo models.

Methods: Cigarette smoke extract (CSE)-treated airway epithelial cells (BEAS-2B) and CS-exposed mice were pretreated with M1, followed by the measurement of proinflammatory cytokines, oxidative stress, mitochondrial fusion proteins (MFN2 and OPA1) and fission proteins (DRP1 and MFF). Molecular pathways were elucidated through transcriptomic analysis and Western blotting.

View Article and Find Full Text PDF

Chemical probes have gained importance in the elucidation of signal transduction in biology. Insufficient selectivity and potency, lack of cellular activity and inappropriate use of chemical probes has major consequences on interpretation of biological results. The catalytic subunit of phosphoinositide 3-kinase α (PI3Kα) is one of the most frequently mutated genes in cancer, but fast-acting, high-quality probes to define PI3Kα's specific function to clearly separate it from other class I PI3K isoforms, are not available.

View Article and Find Full Text PDF

BMSC Derived Exosomes Attenuate Apoptosis of Temporomandibular Joint Disc Chondrocytes in TMJOA via PI3K/AKT Pathway.

Stem Cell Rev Rep

November 2024

Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.

Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) are crucial means of intercellular communication and can regulate a range of biological processes by reducing inflammation, decreasing apoptosis and promoting tissue repair. We treated temporomandibular joint (TMJ) disc chondrocytes with TNF-α and performed local injection of sodium iodoacetate (MIA) in the TMJ of rats to establish in vitro and in vivo models of TMJ osteoarthritis (TMJOA). BMSC-Exos were isolated and extracted to evaluate their proliferation and trilineage differentiation abilities, and their antiapoptotic and chondroprotective effects were assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!