Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accumulating evidence indicates that the polyphenol resveratrol (trans-3, 5, 4"-trihydroxystibene, RVT) potently protects against cerebral ischemia neuronal damage due to its oxygen free radicals scavenging and antioxidant properties. However, it is unknown whether RVT can attenuate ischemia-induced early impairment of neuronal excitability. To address this question, we simulated ischemic conditions by applying oxygen-glucose deprivation (OGD) to acute rat hippocampal slices and examined the effect of RVT on OGD-induced pyramidal neuron excitability impairment using whole-cell patch clamp recording. 100 microM RVT largely inhibited the 15 min OGD-induced progressive membrane potential (Vm) depolarization and the reduction in evoked action potential frequency and amplitude in pyramidal neurons. In a parallel neuronal viability study using TO-PRO-3 iodide staining, 20 min OGD induced irreversible CA1 pyramidal neuronal death which was significantly reduced by 100 microM RVT. No similar effects were found with PQQ treatment, an antioxidant also showing potent neuroprotection in the rat rMCAO ischemia model. This suggests that antioxidant action per se, is unlikely accounting for the observed early effects of RVT. RVT also markedly reduced the frequency and amplitude of AMPA mediated spontaneous excitatory postsynaptic currents (sEPSCs) in pyramidal neurons, which is also an early consequence of OGD. RVT effects on neuronal excitability were inhibited by the large-conductance potassium channel (BK channel) inhibitor paxilline. Together, these studies demonstrate that RVT attenuates OGD-induced neuronal impairment occurring early in the simulated ischemia slice model by enhancing the activation of BK channel and reducing the OGD-enhanced AMPA/NMDA receptor mediated neuronal EPSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490603 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2008.03.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!