Catabolic processes play a crucial role in the steady state of the amyloid-beta peptide (Abeta). Neprilysin (NEP) and angiotensin-converting enzyme (ACE), two transmembranal enzymes with greatest importance in peptide pharmacology, are known to play a role in Abeta catabolism. This paper focuses on the N-terminal part of Abeta. This region contains the three amino acid residues that determine the differences between human (hAbeta) and murine Abeta (mAbeta). Moreover, the N-terminal part of Abeta contains the zinc-binding site of the molecule. Consequently, all hydrolytic attacks on this part of the Alzheimer peptide should be of exceptional interest. We investigated domain-selective forms of ACE in HPLC-monitored peptide degradation studies and used mass spectrometry for product analyses. We found that ACE-evoked a hydrolysis of the N-terminal part of m- and hAbeta. The hAbeta sequence hAbeta (4-15) was found to be a better substrate for ACE compared to the corresponding murine form. Moreover, we localized the corresponding cleavage sites in the N-terminal part of Abeta as well as in the full-length molecule and identified new sites of endopeptidolytic attack by ACE. Finally, we demonstrate that both catalytic domains of mACE have similar hydrolytic activity on the N-terminal part of Abeta. Our results show that ACE besides its typical function as a dipeptidyl-carboxypeptidase has also unequivocal endopeptidolytic activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2008.03.058DOI Listing

Publication Analysis

Top Keywords

n-terminal abeta
16
angiotensin-converting enzyme
8
abeta
7
n-terminal
6
ace
5
catabolic attacks
4
attacks membrane-bound
4
membrane-bound angiotensin-converting
4
enzyme n-terminal
4
n-terminal species-specific
4

Similar Publications

Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.

View Article and Find Full Text PDF

Introduction: Novel fluid biomarkers for tracking neurodegeneration specific to Alzheimer's disease (AD) are greatly needed.

Methods: Using two independent well-characterized cohorts (n = 881 in total), we investigated the group differences in plasma N-terminal tau (NT1-tau) fragments across different AD stages and their association with cross-sectional and longitudinal amyloid beta (Aβ) plaques, tau tangles, brain atrophy, and cognitive decline.

Results: Plasma NT1-tau significantly increased in symptomatic AD and displayed positive associations with Aβ PET (positron emission tomography) and tau PET.

View Article and Find Full Text PDF

Efficient Seeding of Cerebral Vascular Aβ-Amyloidosis by Recombinant AβM1-42 Amyloid Fibrils.

J Mol Biol

February 2025

Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden. Electronic address:

Aβ-amyloid plaques and cerebral amyloid angiopathy (CAA) in the brain are pathological hallmarks of Alzheimer's disease (AD) and vascular dementia. The spreading of Aβ amyloidosis in the brain appears to be mediated by a seeding mechanism, where preformed fibrils (called seeds) accelerate Aβ fibril formation by bypassing the rate-determining nucleation step. Several studies have demonstrated that Aβ amyloidosis can be induced in transgenic mice, producing human Aβ, by injecting Aβ-rich brain extracts (seeds) derived from transgenic mice and human AD brains.

View Article and Find Full Text PDF

The increasing prevalence of diabetes and its related cognitive impairments is a significant public health concern. With limited clinical treatment options and an incomplete understanding of the underlying mechanisms, traditional Chinese medicine (TCM) Naofucong is proposed as a potential neuroprotective agent against diabetic cognitive impairment (DCI). This study aims to investigate the therapeutic mechanisms of Naofucong in DCI.

View Article and Find Full Text PDF

Preparation of amyloid N-terminal nonapeptide imprinted monolithic column and evaluation of adsorption properties.

J Pharm Biomed Anal

February 2025

College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:

A novel β-amyloid protein capillary microextraction column was designed and prepared using epitope molecular imprinting technology for specific recognition of trace β-amyloid proteins in complex biological matrices. Using N-terminal nonapeptide of β-amyloid protein as template molecule, choline chloride-MAA and N-hydroxymethyl acrylamide as functional monomers, ethylene glycol dimethacrylate as crosslinker, the imprinted capillary monolithic column was prepared by thermal polymerization in the acetonitrile-water system. The optimal preparation parameters were obtained with the ratio of template: functional monomer: crosslinker at 1:6:16 (mmol/mmol/mmol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!