A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous gene expression profiling in human macrophages infected with Leishmania major parasites using SAGE. | LitMetric

AI Article Synopsis

  • Leishmania are parasites that can live and reproduce inside human immune cells, creating a competitive environment between the host trying to fight the infection and the parasite trying to survive.
  • Researchers used a method called SAGE to analyze gene expression in human immune cells infected by Leishmania, which allowed them to identify thousands of gene tags from both the host and the parasite.
  • The study found significant changes in gene expression related to the immune response in human cells and the development stages of the Leishmania parasite, highlighting the complex nature of host-parasite interactions.

Article Abstract

Background: Leishmania (L) are intracellular protozoan parasites that are able to survive and replicate within the harsh and potentially hostile phagolysosomal environment of mammalian mononuclear phagocytes. A complex interplay then takes place between the macrophage (MPhi) striving to eliminate the pathogen and the parasite struggling for its own survival. To investigate this host-parasite conflict at the transcriptional level, in the context of monocyte-derived human MPhis (MDM) infection by L. major metacyclic promastigotes, the quantitative technique of serial analysis of gene expression (SAGE) was used.

Results: After extracting mRNA from resting human MPhis, Leishmania-infected human MPhis and L. major parasites, three SAGE libraries were constructed and sequenced generating up to 28,173; 57,514 and 33,906 tags respectively (corresponding to 12,946; 23,442 and 9,530 unique tags). Using computational data analysis and direct comparison to 357,888 publicly available experimental human tags, the parasite and the host cell transcriptomes were then simultaneously characterized from the mixed cellular extract, confidently discriminating host from parasite transcripts. This procedure led us to reliably assign 3,814 tags to MPhis' and 3,666 tags to L. major parasites transcripts. We focused on these, showing significant changes in their expression that are likely to be relevant to the pathogenesis of parasite infection: (i) human MPhis genes, belonging to key immune response proteins (e.g., IFNgamma pathway, S100 and chemokine families) and (ii) a group of Leishmania genes showing a preferential expression at the parasite's intra-cellular developing stage.

Conclusion: Dual SAGE transcriptome analysis provided a useful, powerful and accurate approach to discriminating genes of human or parasitic origin in Leishmania-infected human MPhis. The findings presented in this work suggest that the Leishmania parasite modulates key transcripts in human MPhis that may be beneficial for its establishment and survival. Furthermore, these results provide an overview of gene expression at two developmental stages of the parasite, namely metacyclic promastigotes and intracellular amastigotes and indicate a broad difference between their transcriptomic profiles. Finally, our reported set of expressed genes will be useful in future rounds of data mining and gene annotation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430024PMC
http://dx.doi.org/10.1186/1471-2164-9-238DOI Listing

Publication Analysis

Top Keywords

human mphis
24
gene expression
12
major parasites
12
human
9
metacyclic promastigotes
8
leishmania-infected human
8
parasite
6
mphis
6
expression
5
tags
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!