A population sample from São Tomé e Príncipe (West Africa) was screened for the G6PD-deficient variants A- (376G/202A), Betica (376G/968C), and Santa Maria (376G/542T). G6PD locus haplotype diversity was also investigated using six intragenic RFLPs (FokI, PvuII, BspHI, PstI, BclI, NlaIII) and a (CTT)n microsatellite 18.61 kb within the G6PD locus. The estimated frequencies of the G6PD*B normal allele, the G6PD*A variant (376G), and the G6PD*A- allele were 0.698, 0.194, and 0.108, respectively. G6PD variants Betica and Santa Maria were not found. Similar levels of microsatellite diversity were found on variants G6PD*B and G6PD*A (H = 0.61 and 0.68, respectively), indicating a similar age for both alleles. All G6PD*A- alleles share the RFLP-microsatellite haplotype ++(-)+(-)+/195, the same haplotype described in nearly all the *A-alleles from sub-Saharan, Mexican Mestizo, and Portuguese populations, consistent with a single and recent origin of the G202A mutation on this *A haplotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1353/hub.2008.0013 | DOI Listing |
J Biol Chem
December 2022
Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA. Electronic address:
The red blood cell (RBC)-Omics study, part of the larger NHLBI-funded Recipient Epidemiology and Donor Evaluation Study (REDS-III), aims to understand the genetic contribution to blood donor RBC characteristics. Previous work identified donor demographic, behavioral, genetic, and metabolic underpinnings to blood donation, storage, and (to a lesser extent) transfusion outcomes, but none have yet linked the genetic and metabolic bodies of work. We performed a genome-wide association (GWA) analysis using RBC-Omics study participants with generated untargeted metabolomics data to identify metabolite quantitative trait loci in RBCs.
View Article and Find Full Text PDFFront Pediatr
October 2021
Department of Children Health Care, Quanzhou Women and Children's Hospital, Quanzhou, China.
The discovery of rare genetic variation through different gene sequencing methods is a very challenging subject in the field of human genetics. A case of a 1-year-old boy with metabolic acidosis and hypokalemia, a small penis, growth retardation, and G-6PD deficiency was reported. Since the clinical symptoms are complex and seem uncorrelated, the authors hypothesized that the child had chromosome or gene problems, and exome sequencing (ES) was applied to samples from him and his parents.
View Article and Find Full Text PDFSaudi J Biol Sci
September 2021
Beaconhouse International College, Science Department, Ontario, Canada.
G6PD deficiency c563T is the most common inherent blood disease among the Mediterranean populations and its molecular diagnosis is critical as the enzyme assay fails for heterozygous individuals. The purpose of the study is to estimate the ubiquity of the heterozygous G6PD Med (c563T) variants among Egyptians and UAE nationals living in Dubai. We validated two molecular methods, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and qPCR allelic discrimination assay for detection of G6PD Med variants.
View Article and Find Full Text PDFJCI Insight
July 2021
Department of Pathology and Carter Immunology Center, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is the single most common enzymopathy, present in approximately 400 million humans (approximately 5%). Its prevalence is hypothesized to be due to conferring resistance to malaria. However, G6PD deficiency also results in hemolytic sequelae from oxidant stress.
View Article and Find Full Text PDFBMC Med
June 2020
KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya.
Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency state in humans. The clinical phenotype is variable and includes asymptomatic individuals, episodic hemolysis induced by oxidative stress, and chronic hemolysis. G6PD deficiency is common in malaria-endemic regions, an observation hypothesized to be due to balancing selection at the G6PD locus driven by malaria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!