G6PD deficient alleles and haplotype analysis of human G6PD locus in São Tomé e Príncipe (West Africa).

Hum Biol

Departamento de Antropologia, Universidade de Coimbra, 3000 Coimbra, Portugal.

Published: December 2007

A population sample from São Tomé e Príncipe (West Africa) was screened for the G6PD-deficient variants A- (376G/202A), Betica (376G/968C), and Santa Maria (376G/542T). G6PD locus haplotype diversity was also investigated using six intragenic RFLPs (FokI, PvuII, BspHI, PstI, BclI, NlaIII) and a (CTT)n microsatellite 18.61 kb within the G6PD locus. The estimated frequencies of the G6PD*B normal allele, the G6PD*A variant (376G), and the G6PD*A- allele were 0.698, 0.194, and 0.108, respectively. G6PD variants Betica and Santa Maria were not found. Similar levels of microsatellite diversity were found on variants G6PD*B and G6PD*A (H = 0.61 and 0.68, respectively), indicating a similar age for both alleles. All G6PD*A- alleles share the RFLP-microsatellite haplotype ++(-)+(-)+/195, the same haplotype described in nearly all the *A-alleles from sub-Saharan, Mexican Mestizo, and Portuguese populations, consistent with a single and recent origin of the G202A mutation on this *A haplotype.

Download full-text PDF

Source
http://dx.doi.org/10.1353/hub.2008.0013DOI Listing

Publication Analysis

Top Keywords

g6pd locus
12
são tomé
8
tomé príncipe
8
príncipe west
8
west africa
8
santa maria
8
g6pd
5
haplotype
5
g6pd deficient
4
deficient alleles
4

Similar Publications

Genome-wide metabolite quantitative trait loci analysis (mQTL) in red blood cells from volunteer blood donors.

J Biol Chem

December 2022

Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA. Electronic address:

The red blood cell (RBC)-Omics study, part of the larger NHLBI-funded Recipient Epidemiology and Donor Evaluation Study (REDS-III), aims to understand the genetic contribution to blood donor RBC characteristics. Previous work identified donor demographic, behavioral, genetic, and metabolic underpinnings to blood donation, storage, and (to a lesser extent) transfusion outcomes, but none have yet linked the genetic and metabolic bodies of work. We performed a genome-wide association (GWA) analysis using RBC-Omics study participants with generated untargeted metabolomics data to identify metabolite quantitative trait loci in RBCs.

View Article and Find Full Text PDF

The discovery of rare genetic variation through different gene sequencing methods is a very challenging subject in the field of human genetics. A case of a 1-year-old boy with metabolic acidosis and hypokalemia, a small penis, growth retardation, and G-6PD deficiency was reported. Since the clinical symptoms are complex and seem uncorrelated, the authors hypothesized that the child had chromosome or gene problems, and exome sequencing (ES) was applied to samples from him and his parents.

View Article and Find Full Text PDF

G6PD deficiency c563T is the most common inherent blood disease among the Mediterranean populations and its molecular diagnosis is critical as the enzyme assay fails for heterozygous individuals. The purpose of the study is to estimate the ubiquity of the heterozygous G6PD Med (c563T) variants among Egyptians and UAE nationals living in Dubai. We validated two molecular methods, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and qPCR allelic discrimination assay for detection of G6PD Med variants.

View Article and Find Full Text PDF

Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is the single most common enzymopathy, present in approximately 400 million humans (approximately 5%). Its prevalence is hypothesized to be due to conferring resistance to malaria. However, G6PD deficiency also results in hemolytic sequelae from oxidant stress.

View Article and Find Full Text PDF

Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency state in humans. The clinical phenotype is variable and includes asymptomatic individuals, episodic hemolysis induced by oxidative stress, and chronic hemolysis. G6PD deficiency is common in malaria-endemic regions, an observation hypothesized to be due to balancing selection at the G6PD locus driven by malaria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!