Building the brain is like erecting a house of cards. The early connections provide the foundation of the adult structure, and disruption of these may be the source of many developmental flaws. Cerebral cortical developmental disorders (including schizophrenia and autism) and perinatal injuries involve cortical neurons with early connectivity. The major hindrance of progress in understanding the early neural circuits during cortical development and disease has been the lack of reliable markers for specific cell populations. Due to the advance of powerful approaches in gene expression analysis and the utility of models with reporter gene expressions in specific cortical cell types, our knowledge of the early cortical circuits is rapidly increasing. With focus on the sub-plate, layer VI and layer V projection neurons, we shall illustrate the progress made in the understanding of their neurochemical properties, physiological characteristics and their integration into the early intracortical and extracortical circuitry. This field benefited from recent developments in mouse genetics in generating models with subtype specific gene expression patterns, powerful cell dissection and separation methods combined with microarray analysis. The emergence of cortical cell type specific biomarkers will not only help neuropathological diagnosis, but will also eventually reveal the causal relations in the pathogenesis of various cortical developmental disorders.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cortical
8
cortical circuits
8
cortical developmental
8
developmental disorders
8
progress understanding
8
gene expression
8
cortical cell
8
early
5
genes involved
4
involved formation
4

Similar Publications

A tribute to Laszlo Zaborszky: pioneering discoveries in the basal forebrain and inspiring generations of neuroscientists.

Brain Struct Funct

December 2024

School of Medicine, Department of Neuropharmacology, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.

This editorial celebrates the 80th birthday of Distinguished Professor Laszlo Zaborszky, co-founder of Brain Structure and Function, and reflects on his monumental contributions to neuroscience, particularly his pioneering work on the cholinergic basal forebrain. Professor Zaborszky's research has reshaped our understanding of this brain region's organization and function, uncovering its critical role in cognitive processes such as learning, memory, and attention. His findings have challenged longstanding assumptions, demonstrating that the cholinergic projections to the cortex are highly organized, with implications for neurodegenerative diseases like Alzheimer's.

View Article and Find Full Text PDF

Visual hallucinations (VH) and pareidolia, a type of minor hallucination, share common underlying mechanisms. However, the similarities and differences in their brain regions remain poorly understood in Parkinson's disease (PD). A total of 104 drug-naïve PD patients underwent structural MRI and were assessed for pareidolia using the Noise Pareidolia Test (NPT) were enrolled.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.

View Article and Find Full Text PDF

High density laminar recordings reveal cell type and layer specific responses to infrared neural stimulation in the rat neocortex.

Sci Rep

December 2024

Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary.

Infrared neural stimulation has consistently shown that temperature is a critical neuronal state variable. However, a comprehensive understanding of the biophysical background is essential. In this study, using high-density laminar electrode recordings, we investigated the impact of pulsed and continuous-wave infrared illumination on cortical neurons in anesthetized rats ([Formula: see text]).

View Article and Find Full Text PDF

Chronic ischemia in moyamoya disease (MMD) impaired white matter microstructure and neural functional network. However, the coupling between cerebral blood flow (CBF) and functional connectivity and the association between structural and functional network are largely unknown. 38 MMD patients and 20 sex/age-matched healthy controls (HC) were included for T1-weighted imaging, arterial spin labeling imaging, resting-state functional MRI and diffusion tensor imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!