The endocannabinoid (EC) system mediates protection against intestinal inflammation. In this study, we investigated the effects of blocking EC degradation or cellular reuptake in experimental colitis in mice. Mice were treated with trinitrobenzene-sulfonic acid in presence and absence of the fatty acid amide hydrolase (FAAH) blocker URB597, the EC membrane transport inhibitor VDM11, and combinations of both. Inflammation was significantly reduced in the presence of URB597, VDM11, or both as evaluated by macroscopic damage score, myeloperoxidase levels, and colon length. These effects were abolished in CB(1)- and CB(2)-receptor-gene-deficient mice. Quantitative reverse transcription polymerase chain reaction after induction of experimental colitis by different pathways showed that expression of FAAH messenger RNA (mRNA) is significantly reduced in different models of inflammation early in the expression of colitis, and these return to control levels as the disease progresses. Genomic DNA from 202 patients with Crohn's disease (CD) and 206 healthy controls was analyzed for the C385A polymorphism in the FAAH gene to address a possible role in humans. In our groups, the C385A polymorphism was equally distributed in patients with CD and healthy controls. In conclusion, drugs targeting EC degradation offer therapeutic potential in the treatment of inflammatory bowel diseases. Furthermore, reduction of FAAH mRNA expression is involved in the pathophysiological response to colitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00109-008-0359-6 | DOI Listing |
J Agric Food Chem
January 2025
College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China.
Microbiota dysfunction induces intestinal disorders and neurological diseases. Mannuronate oligosaccharides (MAOS), a kind of alginate oligosaccharide (AOS), specifically exert efficacy in shaping gut microbiota and relieving cognitive impairment. However, the key regulatory factors involved, such as the specific strains and metabolites as well as their regulatory mechanisms, remain unclear at present.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
Background: Huanglian-ejiao decoction (HED) is a Chinese traditional medicinal formula evolved from the Shanghan Lun (Treatise on Febrile Diseases). However, HED ultimate mechanism of action remained indistinct. Therefore, this study aimed to investigate whether HED could exert anti-inflammatory effects on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis (UC) model through the regulation of CD4T subsets and gut microbiota.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.
The etiology of inflammatory bowel disease (IBD) remains unclear, treatment options unsatisfactory and disease development difficult to predict for individual patients. Dysbiosis of the gastrointestinal microbiota and disruption of the biological clock have been implicated and studied as diagnostic and therapeutic targets. Here, we examine the relationship of IBD to biological clock and gut microbiota by using the IL-10 deficient () mouse model for microbiota-dependent spontaneous colitis in combination with altered (4 h/4 h) light/dark cycles to disrupt and time-restricted feeding (TRF) to restore circadian rhythmicity.
View Article and Find Full Text PDFMucosal Immunol
January 2025
Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany.
Intestinal immune homeostasis relies on intestinal epithelial cells (IECs), which provide an efficient barrier, and warrant a state of tolerance between the microbiome and the mucosal immune system. Thus, proper epithelial microbial sensing and handling of microbes is key to preventing excessive immunity, such as seen in patients with inflammatory bowel disease (IBD). To date, the molecular underpinnings of these processes remain incompletely understood.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea.
Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!