One challenging question in neurogenesis concerns the identification of cues that trigger axonal growth and pathfinding to form stereotypic neuronal networks during the construction of a nervous system. Here, we show that in Drosophila, Engrailed (EN) and Gooseberry-Neuro (GsbN) act together as cofactors to build the posterior commissures (PCs), which shapes the ventral nerve cord. Indeed, we show that these two proteins are acting together in axon growth and midline crossing, and that this concerted action occurs at early development, in neuroblasts. More precisely, we identified that their expressions in NB 6-4 are necessary and sufficient to trigger the formation of the PCs, demonstrating that segmentation genes such as EN and GsbN play a crucial role in the determination of NB 6-4 in a way that will later influence growth and guidance of all the axons that form the PCs. We also demonstrate a more specific function of GsbN in differentiated neurons, leading to fasciculations between axons, which might be required to obtain PC mature axon bundles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373891PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002197PLOS

Publication Analysis

Top Keywords

concerted action
8
engrailed gooseberry-neuro
8
action engrailed
4
gooseberry-neuro neuroblast
4
neuroblast 6-4
4
6-4 triggering
4
triggering formation
4
formation embryonic
4
embryonic posterior
4
posterior commissure
4

Similar Publications

Grapes are prone to softening, which limits their shelf life and suitability for long-distance transport. This study explored the molecular mechanisms underlying the effects of the chemical preservatives gibberellin (GA) and the nitric oxide donor sodium nitroprusside (SNP) on grape firmness. Enhancing grape quality, prolonging shelf life, and extending market supply were key objectives.

View Article and Find Full Text PDF

This work pioneered an innovative visible light-powered, self-cascading peroxide antimicrobial packaging system (RPFe-CS), featuring a photodynamic enhancement effect achieved through the demand-oriented design of riboflavin sodium phosphate and Fe coordination complexes (RPFe) fillers with photodynamic and peroxidase activities, and the ingenious selection of slightly acidic chitosan (CS) film matrix. In this system, the photo-responsive properties of RPFe particles not only generate the •O, •OH, and O required for photodynamic sterilization, but also the produced HO serves as a necessary substrate for peroxidase to exert its bactericidal effect, endowing the packaging system with a "self-production and self-marketing" cascade process. The RPFe-CS film achieved efficient eradication to bacteria and fungi reaching up to 99.

View Article and Find Full Text PDF

The adenosine A1 receptor (AR) is a promising target for pain treatment. However, the development of therapeutic agonists is hampered by adverse effects, mainly including sedation, bradycardia, hypotension, or respiratory depression. Recently discovered molecules able to overcome this impediment are the positive allosteric modulator MIPS521 and the A1R-selective agonist BnOCPA, which are both potent and powerful analgesics with fewer side effects.

View Article and Find Full Text PDF

In situ detection of PD1-PD-L1 interactions as a functional predictor for response to immune checkpoint inhibition in NSCLC.

J Thorac Oncol

December 2024

Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Centre of Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway. Electronic address:

Background: Immune checkpoint inhibitors (ICIs) have transformed lung cancer treatment, yet their effectiveness appears restricted to certain patient subsets. Current clinical stratification based on PD-L1 expression offers limited predictive value. Given the mechanism of action, directly detecting spatial PD1-PD-L1 interactions might yield more precise insights into immune responses and treatment outcomes.

View Article and Find Full Text PDF

Developmental networks comprise individuals (i.e., developers) who take an active interest in and concerted action to advance protégé's career.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!