We examine the diffraction properties of one- and two-dimensional binary-phase gratings encoded onto pixelated liquid crystal displays (LCDs). We find that the first-order diffracted intensity from these binary-phase patterns can reach 100% of the zero-order intensity when the period of the grating approaches the Nyquist limit of the LCD. Experimental results show excellent agreement with theoretical predictions. This is a surprising result that has a number of implications for the encoding of diffractive optical elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.47.002829 | DOI Listing |
Nanoscale
January 2025
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China.
Two-dimensional organic-inorganic perovskites have garnered extensive interest owing to their unique structure and optoelectronic performance. However, their loose structures complicate the elucidation of mechanisms and tend to cause uncertainty and variations in experimental and calculated results. This can generally be rooted in dynamically swinging spacer molecules through two mechanisms: one is the intrinsic geometric steric effect, and the other is related to the electronic effect orbital overlapping and electronic screening.
View Article and Find Full Text PDFPLoS One
January 2025
Wroclaw University of Economics and Business, Wrocław, Poland.
The paper analyzes the problem of entropy in the moments of transition from a normal economic situation (2015-2019) to the Pandemic period (2020-2021) and the period of Russia's attack on Ukraine (2022-2023). The research in the article is based on the analysis of electricity, oil, coal, and gas prices in 27 countries of the European Union and Norway. The daily data cover the period from January 1, 2015, to March 30, 2023, and were analyzed using two-dimensional sets of electricity and commodity prices.
View Article and Find Full Text PDFThe evolutionary model of construction land serves as a fundamental pillar in national spatial development and planning research. However, previous studies have overlooked the "climbing" mode of construction land on three-dimensional terrains. To address this issue, utilizing elevation data and land use data from 2010 to 2020, this study employs slope analysis, intensity analysis, spatio-temporal transformation, and PLUS model to elucidate the spatial expansion process and driving forces of urban construction land in Chongqing from both two-dimensional and three-dimensional perspectives.
View Article and Find Full Text PDFPLoS One
January 2025
School of Power and Mechanical Engineering, Wuhan University, Wuhan, China.
The prevailing trend in industrial equipment development is integration, with pipelines as the lifeline connecting system components. Given the often harsh conditions of these industrial equipment pipelines, leakage is a common occurrence that can disrupt normal operations and, in severe cases, lead to safety accidents. Early detection of even minor drips at the onset of leakage can enable timely maintenance measures, preventing more significant leaks and halting the escalation of pipeline failures.
View Article and Find Full Text PDFScience
January 2025
Department of Chemistry, Northwestern University, Evanston, IL, USA.
Mechanical bonds arise between molecules that contain interlocked subunits, such as one macrocycle threaded through another. Within polymers, these linkages will confer distinctive mechanical properties and other emergent behaviors, but polymerizations that form mechanical bonds efficiently and use simple monomeric building blocks are rare. In this work, we introduce a solid-state polymerization in which one monomer infiltrates crystals of another to form a macrocycle and mechanical bond at each repeat unit of a two-dimensional (2D) polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!