Insulin signaling in skeletal L6 myotubes is known to be affected by arginine methylation catalyzed by protein N-arginine methyltransferase 1 (PRMT1), however, the mechanism by which this occurs has not yet been defined. This study aimed to determine the exact substrate involved in the methylation and regulating insulin signaling in cells. Insulin enhanced arginine methylation of a 66-kDa protein (p66) concomitant with translocation of PRMT1 to the membrane fraction. Peptide mass fingerprinting identified p66 as a heterogeneous nuclear ribonucleoprotein, hnRNPQ that was bound to and methylated by PRMT1. Pharmacological inhibition of methylation (MTA) and small interfering RNA against PRMT1 (PRMT1-siRNA) attenuated insulin-stimulated tyrosine phosphorylation of hnRNPQ and insulin receptor (IR), and the interaction between hnRNPQ and IR. MTA, PRMT1-siRNA, and hnRNPQ-siRNA inhibited internalization of IR in the same manner. These data suggest that the PRMT1-mediated methylation of hnRNPQ is implicated in IR trafficking and insulin signaling in skeletal L6 myotubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2008.05.051 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States.
Recombinant human IGF-1 is used to treat severe primary IGF-1 deficiency, but this treatment requires twice-daily injection, often does not fully correct the growth deficit, and has important off-target effects. We therefore sought to target IGF-1 to growth plate cartilage by generating fusion proteins combining IGF-1 with single-chain human antibody fragments that target matrilin-3, a cartilage matrix protein. We previously showed that this cartilage-targeting IGF-1 fusion protein (CV1574-1) promoted growth plate function in a GH-deficient (lit) mouse model.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:
Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
Department of Cardiology, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, People's Republic of China.
Altered tyrosine kinase signaling is associated with a variety of diseases. Tyrosine kinases can be classified into two groups: receptor type and nonreceptor type. Nonreceptor-type tyrosine kinases are subdivided into Janus kinases (JAKs), focal adhesion kinases (FAKs) and tec protein tyrosine kinases (TECs).
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
Background: Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse.
View Article and Find Full Text PDFAnn Nutr Metab
January 2025
Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.
Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.
Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!