Transforming growth factor beta1 (TGF-beta1) is an essential regulator of cell proliferation, survival and apoptosis, depending on the cellular context. TGF-beta1 is also known to affect cell-to-cell interactions between tumour cells and stromal cells. We investigated the role of TGF-beta1 in the survival of myelo-monocytic leukaemia cell lines co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSC). Treatment with recombinant human (rh)TGF-beta1 inhibited spontaneous and cytarabine-induced apoptosis in U937 cells, most prominently in U937 cells directly attached to MSCs. Conversely, the pro-survival effects of TGF-beta1 were inhibited by LY2109761 or TGF-beta1 neutralizing antibody. rhTGF-beta1 increased pro-survival phosphorylation of Akt, which was inhibited by LY2109761. The combination of rhTGF-beta1 and MSC co-culture induced significant upregulation of C/EBPbeta gene (CEBPB) and protein expression along with increased C/EBPbeta liver-enriched activating protein: liver-enriched inhibitory protein ratio, suggesting the novel role of C/EBPbeta in TGF-beta1-mediated U937 cell survival in the context of stromal cell support. In summary, these results indicate that TGF-beta1 produced by BM stromal cells promotes the survival and chemoresistance of leukaemia cells under the direct cell-to-cell interactions. The blockade of TGF-beta signalling by LY2109761, which effectively inhibited the pro-survival signalling, may enhance the efficacy of chemotherapy against myelo-monocytic leukaemic cells in the BM microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2141.2008.07130.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!