A series of polymeric biomaterials, including poly(methyl acrylate), chitosan, poly(ethyl acrylate) (PEA), poly(hydroxyethyl acrylate) (PHEA), and a series of random copolymers containing ethyl acrylate, hydroxyethyl acrylate, and methyl acrylate were tested in vitro as culture substrates and compared for their effect on the differentiation of neural stem cells (NSCs) obtained from the subventricular zone of postnatal rats. Immunocytochemical assay for specific markers and scanning electron microscopy techniques were employed to determine the adhesion of the cultured NSCs to the different biomaterials and the respective neuronal differentiation. The functional properties and the membrane excitability of differentiated NSCs were investigated using a patch-clamp. The results show that the substrate's surface chemistry influences cell attachment and neuronal differentiation, probably through its influence on adsorbed laminin, and that copolymers based on PEA and PHEA in a narrow composition window are suitable substrates to promote cell attachment and differentiation of adult NSCs into functional neurons and glia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.tea.2007.0295 | DOI Listing |
Front Mol Neurosci
December 2024
State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
Utricle is an important vestibular sensory organ for maintaining balance. 3,3'-iminodipropionitrile (IDPN), a prototype nitrile toxin, has been reported to be neurotoxic and vestibulotoxic, and can be used to establish an damage model of vestibular dysfunction. However, the mechanism of utricular HCs damage caused by IDPN is unclear.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
Research Institute, Children's Hospital of Orange County, Orange, CA, USA.
Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.
View Article and Find Full Text PDFencodes a UDP-galactose transporter essential for glycosylation of proteins and galactosylation of lipids and glycosaminoglycans. Germline genetic variants have been identified in congenital disorders of glycosylation and somatic variants have been linked to intractable epilepsy associated with malformations of cortical development. However, the functional consequences of these pathogenic variants on brain development and network integrity remain elusive.
View Article and Find Full Text PDFGlioblastoma tumors remain a formidable challenge for immune-based treatments because of their molecular heterogeneity, poor immunogenicity, and growth in the largely isolated and immunosuppressive neural environment. As the tumor grows, GBM cells change the composition and architecture of the neural extracellular matrix (ECM), affecting the mobility, survival, and function of immune cells such as tumor-associated microglia and infiltrated macrophages (TAMs). We have previously described the unique expression of the ECM protein EFEMP1/fibulin-3 in GBM compared to normal brain and demonstrated that this secreted protein promotes the growth of the GBM stem cell (GSC) population.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.
Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!