In nature, sounds from objects of interest arrive at the ears accompanied by sound waves from other actively emitting objects and by reflections off of nearby surfaces. Despite the fact that all of these waveforms sum at the eardrums, humans with normal hearing effortlessly segregate one sound source from another. Our laboratory is investigating the neural basis of this perceptual feat, often called the "cocktail party effect", using the barn owl as an animal model. The barn owl, renowned for its ability to localize sounds and its spatiotopic representation of auditory space, is an established model for spatial hearing. Here, we briefly review the neural basis of sound-localization of a single sound source in an anechoic environment and then generalize the ideas developed therein to cases in which there are multiple, concomitant sound sources and acoustical reflection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00422-008-0232-2DOI Listing

Publication Analysis

Top Keywords

sound source
8
neural basis
8
barn owl
8
object localization
4
localization cluttered
4
cluttered acoustical
4
acoustical environments
4
environments nature
4
nature sounds
4
sounds objects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!