Mice deficient in both pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide survive, but display growth retardation and sex-dependent early death.

J Mol Neurosci

Semel Institute/Department of Psychiatry and Biobehavioral Research and Mental Retardation Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.

Published: November 2008

Pituitary adenylyl cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two closely related neuropeptides exhibiting overlapping activities which have actions on almost every organ system of the body. To determine if these peptides exert essential but redundant functions, we interbred VIP- and PACAP-deficient mice to obtain VIP/PACAP double knockout (DKO) mice. DKO mice had normal birth weights and survived to weaning, but exhibited a dramatic postnatal growth rate reduction. Analyses at postnatal day 16 indicated that all organs examined except the brain were reduced in mass by 40-70% compared to mixed background controls, with the thymus and spleen most profoundly affected. Brain size was also significantly reduced, but by only 10%. The reduced growth rate of DKO mice was associated with reduced serum concentrations of insulin-like growth hormone-1 (IGF-1), but unchanged levels of growth hormone. Despite the normal survival of DKO mice up to the weaning stage, many subsequently experienced early sudden death, with only 48% of females and 82% of males surviving past 6 months. The results indicate that a significant percentage of mice deficient in both VIP and PACAP survive to adulthood, but their growth rate is profoundly affected, and that females in particular exhibit high rate of mortality after about 3 months of age.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-008-9085-3DOI Listing

Publication Analysis

Top Keywords

dko mice
16
growth rate
12
mice deficient
8
pituitary adenylyl
8
adenylyl cyclase-activating
8
cyclase-activating polypeptide
8
vasoactive intestinal
8
intestinal peptide
8
mice
7
growth
6

Similar Publications

Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that and play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder.

View Article and Find Full Text PDF

The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Endosomal nucleic acid sensing by Toll-like receptors (TLRs) is central to antimicrobial immunity and several autoimmune conditions such as systemic lupus erythematosus (SLE). The innate immune adaptor TASL mediates, via the interaction with SLC15A4, the activation of IRF5 downstream of human TLR7, TLR8 and TLR9, but the pathophysiological functions of this axis remain unexplored. Here we show that SLC15A4 deficiency results in a selective block of TLR7/9-induced IRF5 activation, while loss of TASL leads to a strong but incomplete impairment, which depends on the cell type and TLR engaged.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!