The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590587 | PMC |
http://dx.doi.org/10.4049/jimmunol.180.11.7461 | DOI Listing |
J Exp Biol
November 2024
Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal.
Marine heatwaves (MHWs) have recently been proposed to be more relevant in driving population changes than the continuous increase in average temperatures associated with climate change. The causal processes underpinning MHW effects in sharks are unclear but may be linked to changes in fitness caused by physiological trade-offs that influence the immune response. Considering the scarcity of data about the immune response of sharks under anomalous warming events, the present study analyzed several fitness indices and characterized the immune response (in the blood, epigonal organ, liver, spleen and intestine) of temperate adult small-spotted catsharks (Scyliorhinus canicula) after a 30 day exposure to a category II MHW.
View Article and Find Full Text PDFImmunol Rev
November 2024
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.
View Article and Find Full Text PDFJ Immunol
June 2024
OmniAb, Emeryville, CA.
H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2023
Proteo-Science Center, Ehime University, Matsuyama, Japan.
The VNAR (Variable New Antigen Receptor) is the smallest single-domain antibody derived from the variable domain of IgNAR of cartilaginous fishes. Despite its biomedical and diagnostic potential, research on VNAR has been limited due to the difficulties in obtaining and maintaining immune animals and the lack of research tools. In this study, we investigated the Japanese topeshark as a promising immune animal for the development of VNAR.
View Article and Find Full Text PDFFish Shellfish Immunol Rep
December 2023
Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
We identified a novel immunoglobulin (Ig) heavy chain-like gene (tsIgH) expressed in the liver of the banded houndshark by preliminary transcriptomic analysis. The tsIgH gene showed less than 30% of amino acid identities to Ig genes of the shark. The gene encodes one variable domain (VH) and three conserved domains (CH1-CH3) with a predicted signal peptide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!