IL-12p40 is a natural antagonist which inhibits IL-12- and IL-23-mediated biological activity by blocking the binding of IL-12/23 to their receptors. Recently, IL-12p40 was also shown to have immune-enhancing activity through the activation of macrophages or dendritic cells. In this study, we investigated the effects of IL-12p40 as a genetic adjuvant on immune modulation using recombinant adenoviruses expressing IL-12p40 (rAd/IL-12p40) and OVA (rAd/OVA). Coimmunization of rAd/IL-12p40 at a low dose (1 x 10(4) PFU) with rAd/OVA resulted in OVA-specific immune enhancement, while a high dose of rAd/IL-12p40 (1 x 10(8) PFU) caused significant suppression of CD8(+) T cell responses. In addition, the enhancement and suppression of OVA-specific CD8(+) T cell responses correlated with antitumor activity against E.G7-OVA tumor challenge, which subsequently affected the survival rate. Moreover, the differential CD8(+) T cell response by IL-12p40 was still observed in IL-12Rbeta2 knockout (IL-12Rbeta2KO), but not in IL-12Rbeta1 knockout (IL-12Rbeta1KO) mice, indicating that IL-12p40 is a cytokine which can modulate Ag-specific T cell responses depending on IL-12Rbeta1. Our findings provide a novel insight on the physiological role of IL-12p40, which can be informative in the design of vaccine strategies and therapeutic regimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.180.11.7167 | DOI Listing |
Int J Med Sci
January 2025
Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, China.
Gastric cancer (GC) remains a significant global health challenge. This study aimed to comprehensively analyze GC epidemiology and risk factors to inform prevention and intervention strategies. We analyzed the Global Burden of Disease Study 2021 data, conducted 16 different machine learning (ML) models of NHANES data, performed Mendelian randomization (MR) studies on disease phenotypes, dietary preferences, microbiome, blood-based markers, and integrated differential gene expression and expression quantitative trait loci (eQTL) data from multiple cohorts to identify factors associated with GC risk.
View Article and Find Full Text PDFJ Cancer
January 2025
Shanghai TCM-Integrated Hospital, Shanghai university of TCM, Shanghai, China.
Killer Cell Lectin Like Receptor D1 (KLRD1) plays a crucial role in antitumor immunity. However, its expression patterns across various cancers, its relationship with patient prognosis, and its potential as an immunotherapy target remain inadequately understood. We analyzed KLRD1 expression across various cancer types using multi-omics data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, correlating it with patient prognosis.
View Article and Find Full Text PDFBiomed Rep
March 2025
Department of Central Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.
Hepatocellular carcinoma (HCC) is characterized by a poor prognosis globally. PAX-interacting protein 1 (PAXIP1) serves a key role in the development of numerous human cancer types. Nevertheless, its specific involvement in HCC remains poorly understood.
View Article and Find Full Text PDFBiomater Res
January 2024
The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
Conventional type 1 dendritic cells are essential for antigen presentation and successful initiation of antitumor CD8 T cells. However, their abundance and function within tumors tend to be limited. , a fast-growing, nonpathogenic mycobacterium, proves to be easily modified with synthetic biology.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium.
The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!