Background: The knee is one of the most frequently injured joints, including 80 000 anterior cruciate ligament (ACL) tears in the United States each year. Bone bruises are seen in over 80% of patients with ACL injuries, and have been associated with an overt loss of cartilage overlying those regions within 6 months of injury.

Hypothesis: The level of contact pressure developed in the human knee joint and the extent of articular cartilage and underlying subchondral bone injuries will depend on the mechanism of applied loads/moments during rupture of the ACL.

Study Design: Controlled laboratory study.

Methods: Seven knee pairs, flexed to 30 degrees , were loaded in compression or internal torsion until injury. Pressure-sensitive film recorded the magnitude and location of contact. Histologic analysis and magnetic resonance imaging were used to document microtrauma to the tibial plateau cartilage and subchondral bone.

Results: All specimens suffered ACL injury, either in the form of a midsubstance rupture or avulsion fracture. The contact area and pressures were higher for compression than torsion experiments. After being loaded, the articular cartilage in the central and posterior regions of the medial tibial plateau showed increased magnetic resonance imaging signal intensity, corresponding to an increased susceptibility to absorb water. Histologically, there were more microcracks in the subchondral bone and more articular cartilage damage in the compression than torsion experiments.

Conclusion: Significant damage occurs to the articular cartilage and underlying subchondral bone during rupture of the ACL. The types and extent of these tissue injuries are a function of the mechanism of ACL rupture.

Clinical Relevance: Patients suffering an ACL injury may be at risk of osteochondral damage, especially if the mechanism of injury involves a high compressive loading component, such as during a jump landing.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0363546508318046DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
subchondral bone
12
anterior cruciate
8
cruciate ligament
8
compressive loading
8
human knee
8
cartilage underlying
8
underlying subchondral
8
magnetic resonance
8
resonance imaging
8

Similar Publications

Previous preclinical and translational studies suggest that tissue trauma related to bony fracture and intervertebral disk disruption initiates the formation of pronociceptive antibodies that support chronic musculoskeletal pain conditions. This study tested this hypothesis in the monosodium iodoacetate (MIA) mouse model of osteoarthritis (OA) and extended the findings using OA patient samples. Monosodium iodoacetate was injected unilaterally into the knees of male and female wild-type (WT) and muMT mice (lacking B cells) to induce articular cartilage damage.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.

View Article and Find Full Text PDF

Transcriptomic Analysis and Experimental Verification of Ferroptosis Signature Genes in Osteoarthritis.

Int J Rheum Dis

January 2025

Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Minda Hospital of Hubei Minzu University, Enshi, China.

Osteoarthritis is a systemic disease that primarily damages articular cartilage and also affects the synovium, ligaments, and bone tissues. The key mechanisms involved are chondrocyte death and degradation of the extracellular matrix. This study aims to identify differentially expressed genes (DEGs) associated with ferroptosis and investigate their roles in the development of osteoarthritis.

View Article and Find Full Text PDF

Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells.

Osteoarthr Cartil Open

March 2025

Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.

Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!