Neisseria meningitidis LpxL1 lipopolysaccharide (LPS) bearing penta-acylated lipid A is considered a promising adjuvant candidate for inclusion in future N. meningitidis vaccines, as it elicits a markedly reduced endotoxic response in human macrophages relative to that in wild-type (hexa-acylated) LPS, while it is an equally effective adjuvant in mice. As dendritic cells (DC) and Toll-like receptors (TLR) are regarded as central mediators in the initiation of an immune response, here we evaluated the ability of LpxL1 LPS to mature and to activate human DC and examined its TLR4-/MD-2-activating properties. Unexpectedly, purified LpxL1 LPS displayed minimal human DC-stimulating properties compared to wild-type LPS. Although whole bacteria induced DC maturation and activation irrespective of their type of LPS, the LpxL1 mutant failed to activate the human recombinant TLR4/MD-2 complex expressed in HeLa cells. Similarly, purified LpxL1 LPS was unable to activate human TLR4/MD-2 and it even acted as an antagonist of wild-type LPS. Both wild-type and LpxL1 LPSs activated the murine TLR4/MD-2 complex, consistent with their abilities to induce maturation and activation of murine DC. Assays with cells transfected with different combinations of human and murine TLR4 and MD-2 indicated that TLR4 was a more-major determinant of the LPS response than MD-2. The species-specific activation of the TLR4/MD-2 complex by LpxL1 LPS may have an impact on the use of LpxL1 LPS as an adjuvant and the use of murine immunization models in human meningococcal vaccine development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493235PMC
http://dx.doi.org/10.1128/IAI.00005-08DOI Listing

Publication Analysis

Top Keywords

lpxl1 lps
20
activate human
12
tlr4/md-2 complex
12
lps
11
lpxl1
9
human
8
adjuvant candidate
8
neisseria meningitidis
8
purified lpxl1
8
wild-type lps
8

Similar Publications

Physiological consequences of inactivation of lgmB and lpxL1, two genes involved in lipid A synthesis in Bordetella bronchiseptica.

Res Microbiol

June 2023

Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands. Electronic address:

To develop a Bordetella bronchiseptica vaccine with reduced endotoxicity, we previously inactivated lpxL1, the gene encoding the enzyme that incorporates a secondary 2-hydroxy-laurate in lipid A. The mutant showed a myriad of phenotypes. Structural analysis showed the expected loss of the acyl chain but also of glucosamine (GlcN) substituents, which decorate the phosphates in lipid A.

View Article and Find Full Text PDF

Whole-cell vaccines against Gram-negative bacteria commonly display high reactogenicity caused by the endotoxic activity of lipopolysaccharide (LPS), one of the major components of the bacterial outer membrane. Underacylation of the lipid A moiety of LPS has been related with reduced endotoxicity in several Gram-negative species. Here, we evaluated whether the inactivation of two genes encoding lipid A acylases of , i.

View Article and Find Full Text PDF

Background: Murepavadin, a novel peptidomimetic antibiotic, is being developed as an inhalation therapy for treatment of Pseudomonas aeruginosa respiratory infection in people with cystic fibrosis (CF). It blocks the activity of the LptD protein in P. aeruginosa causing outer membrane alterations.

View Article and Find Full Text PDF
Article Synopsis
  • Levels of bacterial LPS and pro-inflammatory cytokines correlate with the severity of meningococcal septicaemia, with Nm-mutant causing milder disease than Nm-wt.
  • The study compared how both bacterial strains affect pro-inflammatory responses in citrated whole blood and the impact of IL-10 on these responses.
  • Results showed that Nm-wt induces a stronger MyD88-dependent cytokine response primarily from monocytes, while IL-10 effectively reduces these cytokines' levels for both strains.
View Article and Find Full Text PDF

A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation from Immunogenicity.

Front Immunol

December 2016

Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.

Background: Group B , an endotoxin-producing Gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB) disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs) or soluble lipopolysaccharide (LPS) represent a potential source of inflammation and residual reactogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!