NRPs (N-rich proteins) were identified as targets of a novel adaptive pathway that integrates endoplasmic reticulum (ER) and osmotic stress signals based on coordinate regulation and synergistic up-regulation by tunicamycin and polyethylene glycol treatments. This integrated pathway diverges from the molecular chaperone-inducing branch of the unfolded protein response (UPR) in several ways. While UPR-specific targets were inversely regulated by ER and osmotic stresses, NRPs required both signals for full activation. Furthermore, BiP (binding protein) overexpression in soybean prevented activation of the UPR by ER stress inducers, but did not affect activation of NRPs. We also found that this integrated pathway transduces a PCD signal generated by ER and osmotic stresses that result in the appearance of markers associated with leaf senescence. Overexpression of NRPs in soybean protoplasts induced caspase-3-like activity and promoted extensive DNA fragmentation. Furthermore, transient expression of NRPs in planta caused leaf yellowing, chlorophyll loss, malondialdehyde production, ethylene evolution, and induction of the senescence marker gene CP1. This phenotype was alleviated by the cytokinin zeatin, a potent senescence inhibitor. Collectively, these results indicate that ER stress induces leaf senescence through activation of plant-specific NRPs via a novel branch of the ER stress response.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M802654200DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
8
integrated pathway
8
osmotic stresses
8
leaf senescence
8
nrps
6
stress
5
branch endoplasmic
4
reticulum stress
4
stress signaling
4
osmotic
4

Similar Publications

Genetic and clinical spectrum of steroid-resistant nephrotic syndrome with nuclear pore gene mutation.

Pediatr Nephrol

January 2025

Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.

Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.

Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.

View Article and Find Full Text PDF

Atherosclerosis (AS) is the principal pathological cause of atherosclerotic cardiovascular diseases. Chronic endoplasmic reticulum stress (ERS) has been implicated in AS aetiopathogenesis, but the underlying molecular interactions remain unclear. This study aims to identify the molecular mechanisms of ERS in AS pathogenesis to inform innovative diagnostic approaches and therapeutic targets for managing AS.

View Article and Find Full Text PDF

Perfluorodecanoic acid (PFDA), a C10 fluorine-containing compound, is used widely and found to be present anywhere. However, whether it has reproductive toxicity for fetal Leydig cells and the underlying mechanisms remain unknown. PFDA was investigated for its effects on fetal Leydig cells (FLCs) following exposure to 0, 1, 2.

View Article and Find Full Text PDF

This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.

View Article and Find Full Text PDF

Inhibition of methionine aminopeptidase in C2C12 myoblasts disrupts cell integrity via increasing endoplasmic reticulum stress.

Biochim Biophys Acta Mol Cell Res

January 2025

Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan.

Proteasome-dependent protein degradation and the digestion of peptides by aminopeptidases are essential for myogenesis. Methionine aminopeptidases (MetAPs) are uniquely involved in, both, the proteasomal degradation of proteins and in the regulation of translation (via involvement in post-translational modification). Suppressing MetAP1 and MetAP2 expression inhibits the myogenic differentiation of C2C12 myoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!