Cutinase, an esterase from Fusarium solani pisi, was immobilized in sol-gel matrices of composition 1:5 tetramethoxysilane (TMOS):n-alkyltrimethoxysilane (n-alkylTMS). Fluorescence spectroscopy using the single tryptophan (Trp-69) residue of cutinase as a probe revealed that the polarity of the matrices decreased as their hydrophobicity increased up to the TMOS/n-butylTMS pair, which correlates with an increase in cutinase activity. Fluorescence emission was suppressed (a higher than two orders of magnitude reduction) in the TMOS/n-octylTMS matrix, suggesting a greater proximity of the tryptophan to a nearby disulfide bridge. When sol-gel matrices were prepared with added zeolite NaY, the fluorescence emission intensity maximum (lambda(max)) of the tryptophan did not change. And although the presence of the zeolite led to the recovery of fluorescence emission from the TMOS/n-octylTMS matrix, the corresponding lambda(max) fell in line with the values obtained for the matrices with lower n-alkyl chain lengths, indicating that the tryptophan does not sense the zeolite. On the other hand, the presence of the zeolite led to increases in cutinase activity in all the matrices. This suggests that the zeolite is in a position to affect the active site of the enzyme, located at the opposite pole of the enzyme molecule. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed that the zeolite particles were segregated to the pores of the matrices. Optical microscopy following the staining of the protein with a fluorescent dye showed that the enzyme was distributed throughout the material, and tended to accumulate around zeolite particles. By promoting the accumulation of the enzyme at the pores of the material, the zeolite should improve the accessibility of the enzyme to the substrates and lead to a higher enzymatic activity. Data obtained for sol-gel matrices with epoxy or SH groups provided further evidence that cutinase responded to changes in the chemical nature of the precursors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2008.03.018 | DOI Listing |
J Fluoresc
December 2024
Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India.
Sol-gel silica matrices singly doped with Sm and co-doped with ligands phenyl phosphinic acid (PPIA) and trioctylphosphine oxide (TOPO) were fabricated and studied for their structural and spectroscopic behaviour. Structural studies were done by x-ray diffraction (XRD) and Fourier transform infra-red (FTIR) absorption analysis whereas spectroscopic behaviour was studied by ultraviolet - visible (UV-Vis) absorption, photoluminescence (PL) excitation, emission and time-correlated decay analyses. XRD studies exhibit the amorphous nature of the samples and FTIR studies corroborate the presence of the ligands in the silica matrix.
View Article and Find Full Text PDFFood Res Int
December 2024
International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal. Electronic address:
Oleogels are semi-solid systems that can function both as replacers of trans and saturated fats and/or as carriers of lipophilic bioactive compounds. However, bioactive compounds can affect the structure of the oleogel matrix and this effect depends on the properties of such compounds. Therefore, the aim of this study was to develop oleogels loaded with β-carotene (BC) or resveratrol (R), with low concentrations of glycerol monostearate (GMS, 2-5 wt%) and sunflower oil as organic solvent.
View Article and Find Full Text PDFGels
November 2024
Instituto Politécnico Nacional CICATA, Legaria, Mexico City 11500, Mexico.
This study compared the chemical, structural, and luminescent properties of xerogel-based ceramic powders (CPs) with those of a new series of crystallized aerogels (CAs) synthesized by the epoxy-assisted sol-gel process. Materials with different proportions of Eu (2, 5, 8, and 10 mol%) were synthesized in LuO host matrices, as well as a EuO matrix for comparative purposes. The products were analyzed by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence analysis, and by the Brunauer-Emmett-Teller (BET) technique.
View Article and Find Full Text PDFGels
November 2024
Chemical Engineering Department and The Radical Research Center, Ariel University, Ariel 4070000, Israel.
The de-halogenation of highly concentrated halo-organic compounds using Zero Valent Iron entrapped in silica matrices as a catalyst was investigated. This study aimed to evaluate the effectiveness of the Zero Valent Iron-entrapped organically modified silica matrices in transforming highly concentrated hazardous halogenated compounds into environmentally benign materials in the presence of BH. The Zero Valent Iron-entrapped silica gel matrices were synthesized using the sol-gel method.
View Article and Find Full Text PDFSci Rep
November 2024
Centre for Cell Imaging, Institute of Systems, Molecular and Integrative Biology, Liverpool, L69 7ZB, UK.
Most embedding media for live and fixed samples were not designed for microscopy and have issues including long polymerization times, peak of toxicity toward the sample during the sol-gel transition, and irreversibility of this transition. Gels derived from biological sources are widely used in microscopy, but their precise composition is ill-defined and can vary between batches. Non-physiological temperatures and/or specific enzymatic solutions are often needed to revert the gel back to the sol state to allow sample recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!