Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Preventing carriage of potentially pathogenic micro-organisms from the aerodigestive tract is an infection control strategy used to reduce the occurrence of ventilator-associated pneumonia in intensive care units. However, antibiotic use in selective decontamination protocols is controversial. The purpose of this study was to investigate the effect of oral administration of a probiotic, namely Lactobacillus, on gastric and respiratory tract colonization/infection with Pseudomonas aeruginosa strains. Our hypothesis was that an indigenous flora should exhibit a protective effect against secondary colonization.
Methods: We conducted a prospective, randomized, double-blind, placebo-controlled pilot study between March 2003 and October 2004 in a 17-bed intensive care unit of a teaching hospital in Clermont-Ferrand, France. Consecutive patients with a unit stay of longer than 48 hours were included, 106 in the placebo group and 102 in the probiotic group. Through a nasogastric feeding tube, patients received either 109 colony-forming units unity forming colony of Lactobacillus casei rhamnosus or placebo twice daily, from the third day after admission to discharge. Digestive tract carriage of P. aeruginosa was monitored by cultures of gastric aspirates at admission, once a week thereafter and on discharge. In addition, bacteriological analyses of respiratory tract specimens were conducted to determine patient infectious status.
Results: The occurrence of P. aeruginosa respiratory colonization and/or infection was significantly delayed in the probiotic group, with a difference in median delay to acquisition of 11 days versus 50 days (P = 0.01), and a nonacquisition expectancy mean of 69 days versus 77 days (P = 0.01). The occurrence of ventilator-associated pneumonia due to P. aeruginosa in the patients receiving the probiotic was less frequent, although not significantly reduced, in patients in the probiotic group (2.9%) compared with those in the placebo group (7.5%). After multivariate Cox proportional hazards modelling, the absence of probiotic treatment increased the risk for P. aeruginosa colonization in respiratory tract (adjusted hazard ratio = 3.2, 95% confidence interval - 1.1 to 9.1).
Conclusion: In this pilot study, oral administration of a probiotic delayed respiratory tract colonization/infection by P. aeruginosa.
Trial Registration: The trial registration number for this study is NCT00604110.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481460 | PMC |
http://dx.doi.org/10.1186/cc6907 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!