Background: The isolation of green fluorescent protein (GFP) and the development of spectral variants over the past decade have begun to reveal the dynamic nature of protein trafficking and organelle motility. In planta analyses of this dynamic process have typically been limited to only two organelles or proteins at a time in only a few cell types.

Results: We generated a transgenic Arabidopsis plant that contains four spectrally different fluorescent proteins. Nuclei, plastids, mitochondria and plasma membranes were genetically tagged with cyan, red, yellow and green fluorescent proteins, respectively. In addition, methods to track nuclei, mitochondria and chloroplasts and quantify the interaction between these organelles at a submicron resolution were developed. These analyzes revealed that N-ethylmaleimide disrupts nuclear-mitochondrial but not nuclear-plastids interactions in root epidermal cells of live Arabidopsis seedlings.

Conclusion: We developed a tool and associated methods for analyzing the complex dynamic of organelle-organelle interactions in real time in planta. Homozygous transgenic Arabidopsis (Kaleidocell) is available through Arabidopsis Biological Resource Center.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2424051PMC
http://dx.doi.org/10.1186/1746-4811-4-9DOI Listing

Publication Analysis

Top Keywords

green fluorescent
8
transgenic arabidopsis
8
fluorescent proteins
8
arabidopsis
5
multidimensional fluorescence
4
fluorescence microscopy
4
microscopy multiple
4
multiple organelles
4
organelles arabidopsis
4
arabidopsis seedlings
4

Similar Publications

In the present study, a norfloxacin (NFX) fluorescent probe was tailored for the spectrofluorometric measurement of cefepime (CFP). The proposed approach measured the quenching effect of CFP on the fluorescence intensity of NFX in acetate buffer solution. The obtained results show that CFP strongly quenches the fluorescence of NFX in a static mechanism.

View Article and Find Full Text PDF

In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states.

View Article and Find Full Text PDF

Background: The treatment of transplant ureteral stricture (TUS) has been a great challenge, and there is limited experience with indocyanine green (ICG) fluorescence-guided robotic Boari flap-pelvis anastomosis to identify ureteral stenosis segments (especially long-segment) and their postoperative blood supply. We report case series of ureteral strictures treated with ICG fluorescence-guided robotic Boari flap-pelvis anastomosis in our center.

Case Description: We retrospectively collected clinical data of six patients diagnosed with long-segment even full-length TUS who underwent robotic Boari flap-pelvis anastomosis with the assistance of modified distribution of robotic ports and ICG fluorescence between June 2022 and June 2024, focusing on postoperative renal function, stenosis recurrence, and urinary fistulae.

View Article and Find Full Text PDF

Plasmonic Ag/PMMA/Eu nanocomposite for sensitive dual mode detection of malachite green.

Biomed Opt Express

January 2025

School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.

Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.

View Article and Find Full Text PDF

Dual sgRNA-directed knockout gene expression using CRISPR/Cas9 technology for editing gene in triple-negative breast cancer.

Narra J

December 2024

Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!