Whereas electron withdrawing substituents retard the rate of aryltrifluoroborate solvolysis, electron-donating groups enhance it. Herein is presented a Hammett analysis of the solvolytic lability of aryltrifluoroborates where log(k(solv)) values correlate to sigma values with a rho value of approximately -1. This work provides a predictable rubric for tuning the reactivity of boron for several uses including (18)F-labeled PET reagents and has mechanistic implications for ArBF(3)-enhanced ligandless metal-mediated cross coupling reactions with aryltrifluoroborates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo800681dDOI Listing

Publication Analysis

Top Keywords

aryltrifluoroborate solvolysis
8
substituent effects
4
effects aryltrifluoroborate
4
solvolysis water
4
water implications
4
implications suzuki-miyaura
4
suzuki-miyaura coupling
4
coupling design
4
design stable
4
stable 18f-labeled
4

Similar Publications

Whereas electron withdrawing substituents retard the rate of aryltrifluoroborate solvolysis, electron-donating groups enhance it. Herein is presented a Hammett analysis of the solvolytic lability of aryltrifluoroborates where log(k(solv)) values correlate to sigma values with a rho value of approximately -1. This work provides a predictable rubric for tuning the reactivity of boron for several uses including (18)F-labeled PET reagents and has mechanistic implications for ArBF(3)-enhanced ligandless metal-mediated cross coupling reactions with aryltrifluoroborates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!