Self-organizable dendronized helical polymers provide a suitable architecture for constructing molecular nanomachines capable of expressing their motions at macroscopic length scales. Nanomechanical function is demonstrated by a library of self-organized helical dendronized cis-transoidal polyphenylacetylenes ( cis-PPAs) that possess a first-order phase transition from a hexagonal columnar lattice with internal order (varphi h (io)) to a hexagonal columnar liquid crystal phase (varphi h). These polymers can function as nanomechanical actuators. When extruded as fibers, the self-organizable dendronized helical cis-PPAs form oriented bundles. Such fibers have been shown capable of work by displacing objects up to 250-times their mass. The helical cis-PPA backbone undergoes reversible extension and contraction on a single molecule length scale resulting from cisoid-to-transoid conformational isomerization of the cis-PPA. Furthermore, we clarify supramolecular structural properties necessary for the observed nanomechanical function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja801863e | DOI Listing |
J Nanobiotechnology
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States.
The antiferromagnetic topological insulator MnBiTe (MBT) exhibits an ideal platform for investigating unique topological and magnetic properties. While the transport characteristics of magnetic phase transitions in the MBT materials have been extensively studied, the understanding of their mechanical properties and magneto-mechanical coupling remains limited. Here, we utilize nanoelectromechanical systems to probe the intrinsic magnetism in MBT thin flakes through magnetostrictive coupling.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).
View Article and Find Full Text PDFTalanta
December 2024
Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
There is a growing interest in the development of methods for the detection of nanoparticle (NP) toxicity to living organisms based on the analysis of relevant multidimensional data sets. In particular the detection of preliminary signs of NPs toxicity effects would benefit from the selection of data featuring NPs-induced alterations of biological barriers. Accordingly, we present an original Topological Data Analysis (TDA) of the nanomechanical properties of Escherichia coli cell surface, evaluated by multiparametric Atomic Force Microscopy (AFM) after exposure of the cells to increasing concentrations of titanium dioxide nanoparticles (TiONPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!