Habitat loss and fragmentation has created metapopulations where there were once continuous populations. Ecologists and conservation biologists have become interested in the optimal way to manage and conserve such metapopulations. Several authors have considered the effect of patch disturbance and recovery on metapopulation persistence, but almost all such studies assume that every patch is equally susceptible to disturbance. We investigated the influence of protecting patches from disturbance on metapopulation persistence, and used a stochastic metapopulation model to answer the question: How can we optimally trade off returns from protection of patches vs. creation of patches? We considered the problem of finding, under budgetary constraints, the optimal combination of increasing the number of patches in the metapopulation network vs. increasing the number of protected patches in the network. We discovered that the optimal trade-off is dependent upon all of the properties of the system: the species dynamics, the dynamics of the landscape, and the relative costs of each action. A stochastic model and accompanying methodology are provided allowing a manager to determine the optimal policy for small metapopulations. We also provide two approximations, including a rule of thumb, for determining the optimal policy for larger metapopulations. The method is illustrated with an example inspired by information for the greater bilby, Macrotis lagotis, inhabiting southwestern Queensland, Australia. We found that given realistic costs for each action, protection of patches should be prioritized over patch creation for improving the persistence of the greater bilby during the next 20 years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/07-1094.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!