The interaction of dopamine (DA) with phospholipid membranes has been investigated. The membrane current in planar bilipid membrane (BLM) modified by amphotericin B in voltage clamp conditions under alternating polarity was shown to symmetrically increase 1.2 times when DA was added outside the BLM. This implies a uniform change of charge on each membrane surface and hence the diffusion of DA within the BLM and its exposure on the internal side. The appearance of single threads and bundles of filaments within the internal liposomal cavities was observed in the ultrastructure of suspended thin-walled liposomes filled with globular actin after the introduction of DA into external solution. This reshaped liposomes into rod-like, spindle-shaped or angular structures. Actin serves as a marker for DA due to its property to polymerize itself under the influence of DA. Thus, the structural reorganization of liposomes manifests the presence of DA inside them and the induction of actin polymerization.
Download full-text PDF |
Source |
---|
Psychopharmacology (Berl)
January 2025
Department of Psychology, University of New England, Biddeford, ME, USA.
Rationale And Objectives: In vivo receptor interactions vary as a function of behavioral endpoint, with key differences between reflexive and non-reflexive measures that assess the motivational aspects of pain and pain relief. There have been no assessments of D dopamine agonist / mu opioid receptor (MOR) agonist interactions in non-reflexive behavioral measures of pain. We examined the hypothesis that D/MOR mixtures show enhanced effectiveness in blocking pain depressed behaviors while showing decreased side effects such as sedation and drug reward.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China. Electronic address:
Recently, the field of cathode photoelectrochemistry has advanced significantly, yet there remained a dearth of innovative approaches in signal transmission strategies. This paper introduced a novel concept where the dopamine (DA)-engineered surface vacancy (Ov) effect on BiFeO microspheres synergistically interacted with the intrinsic polarization of the material, leading to a significantly enhanced photocurrent when compared to that of BiO or FeO alone without a built-in electric field. Based on this finding, we proposed a PEC biosensor that leveraged the competitive binding reaction between single-base nucleotides and DA for photocurrent output, wherein the T4 DNA ligase-mediated ligation reaction governed the production of single-base nucleotides.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China. Electronic address:
Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system.
View Article and Find Full Text PDFNeurogenetics
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
Huntington's disease (HDs) is a fatal, autosomal dominant, and hereditary neurodegenerative disorder characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. HD is well linked to mutation in the HTT gene, which leads to an abnormal expansion of trinucleotide CAG repeats, resulting in the production of the mHTT protein and responsible for abnormally long poly-Q tract. These abnormal proteins disrupt cellular processes, including neuroinflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction, ultimately leading to selective neuronal loss in the brain.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India. Electronic address:
Iron accumulation and mitochondrial dysfunction in astroglia are reported in Parkinson's disease (PD). Astroglia control iron availability in neurons in which dopamine (DA) synthesis is affected in PD. Despite their intimate relationship the role of DA in astroglial iron homeostasis is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!