Most gastrointestinal stromal tumors (GISTs) are associated with activating kinase mutation in KIT or platelet-derived growth factor receptor alpha (PDGFRA) gene, and imatinib has revolutionized the care of advanced GISTs. However, most patients gradually developed resistance to imatinib. We intend to identify the secondary kinase mutations in imatinib-resistant GISTs and to study the relationship between secondary kinase mutations and the clinical response to imatinib. Twelve advanced GIST patients, who have developed resistance to imatinib were included in this study. Paraffin-embedded pretreatment GIST specimens and progression lesions of the tumors after resistance to imatinib were analyzed for kinase mutations in exons 9, 11, 13, and 17 of KIT gene and exons of 10, 12, 14, and 18 of PDGFRA gene. Primary KIT mutations have been found in all but one of the primary tumors including one case harboring de novo double KIT exon 11 mutations. Secondary kinase mutations in KIT and PDGFRA were found in seven and 1 of 12 patients, respectively. Two patients harbored more than one secondary KIT mutations in different progression sites, and there are four types of clonal or polyclonal evolution being observed. The secondary PDGFRA exon 14 mutation H687Y is a novel mutation that has never been reported before. Acquired secondary kinase mutations are the most important cause of secondary imatinib resistance in advanced GISTs. The identification of secondary kinase mutations is important in the development of new therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12032-007-9014-2 | DOI Listing |
Vascul Pharmacol
January 2025
Department of Internal Medicine, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy. Electronic address:
Long non-coding RNA (lncRNA) may be involved in dysfunction of pulmonary artery endothelial cells (PAEC) and, thus, in pulmonary arterial hypertension (PAH) pathobiology. We screened the RNA expression profile of commercial human PAEC (hPAEC) exposed to increased hydrostatic pressure, and found that the lncRNA Down syndrome critical region 9 (DSCR9) was the most regulated transcript (log2FC 1.89 vs control).
View Article and Find Full Text PDFPLoS One
January 2025
Cancer Center, Kagoshima University Hospital, Kagoshima, Japan.
Kinase-related gene fusion and point mutations play pivotal roles as drivers in cancer, necessitating optimized, targeted therapy against these alterations. The efficacy of molecularly targeted therapeutics varies depending on the specific alteration, with great success reported for such therapeutics in the treatment of cancer with kinase fusion proteins. However, the involvement of actionable alterations in solid tumors, especially regarding kinase fusions, remains unclear.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Cleveland Clinic, Cleveland, OH, United States.
Epidermal growth factor receptor (EGFR) is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors is limited to cancers that harbor sensitizing mutations in the EGFR gene due to dose limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wildtype or mutant EGFR. We found that YES1 is highly expressed in triple negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning.
Uncommon atypical mutations account for 10-15% of all epidermal growth factor receptor (EGFR) activating mutations in nonsmall-cell lung cancer (NSCLC). Tumors harboring rare EGFR mutations show highly heterogeneous responses to EGFR tyrosine kinase inhibitors (TKIs). There is insufficient clinical evidence for uncommon types of EGFR mutations, especially those with compound EGFR mutations.
View Article and Find Full Text PDFMedicines (Basel)
January 2025
Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!