Bacterioopsin, expressed in Escherichia coli as a fusion protein with 13 heterologous residues at the amino terminus, has been purified in the presence of detergents and retinylated to give bacteriorhodopsin. Further purification yielded pure bacteriorhodopsin, which had an absorbance ratio (A280/A lambda max) of 1.5 in the dark-adapted state in a single-detergent environment. This protein has a folding rate, absorbance spectrum, and light-induced proton pumping activity identical with those of bacteriorhodopsin purified from Halobacterium halobium. Protein expressed from the mutants D85N, D96N, and R82Q and purified similarly yielded pure protein with absorbance ratios of 1.5. Proton pumping rates of bacteriorhodopsins with the wild-type sequence and variants D85N, D96N, and R82Q were determined in phospholipid vesicles as a function of pH. D85N was inactive at all pH values, whereas D96N was inactive from pH 7.0 to pH 8.0, where wild type is most active, but had some activity at low pH. R82Q showed diminished proton pumping with the same pH dependence as for wild type. Bacteriorhodopsin purified from E. coli crystallized in two types of two-dimensional crystal lattices suitable for low-dose electron diffraction, which permit detailed analysis of structural differences in site-directed variants. One lattice was trigonal, as in purple membrane, and showed a high-resolution electron diffraction pattern from glucose-sustained patches. The other lattice was previously uncharacterized with unit cell dimensions a = 127 A, b = 67 A, and symmetry of the orthorhombic plane group pgg.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00226a016DOI Listing

Publication Analysis

Top Keywords

d85n d96n
12
d96n r82q
12
electron diffraction
12
proton pumping
12
yielded pure
8
bacteriorhodopsin purified
8
wild type
8
wild-type mutant
4
mutant bacteriorhodopsins
4
d85n
4

Similar Publications

FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin.

Biochemistry

May 2005

Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.

In a light-driven proton pump protein, bacteriorhodopsin (BR), three water molecules participate in a pentagonal cluster that stabilizes an electric quadrupole buried inside the protein. Previously, low-temperature Fourier-transform infrared (FTIR) difference spectra between BR and the K photointermediate in D(2)O revealed six O-D stretches of water in BR at 2690, 2636, 2599, 2323, 2292, and 2171 cm(-)(1), while five water bands were observed at 2684, 2675, 2662, 2359, and 2265 cm(-)(1) for the K intermediate. The frequencies are widely distributed over the possible range of stretching vibrations of water, and water molecules at <2400 cm(-)(1) were suggested to hydrate negative charges because of their extremely strong hydrogen bonds.

View Article and Find Full Text PDF

High-throughput screening of bacteriorhodopsin mutants in whole cell pastes.

Biochim Biophys Acta

August 2002

Department of Physiology and Biophysics and the Neurosciences Program, The University of Miami School of Medicine, Miami, FL 33101, USA.

A high-throughput screening method has been developed which enables functional analysis of bacteriorhodpsin in whole cell pastes. Reflectance spectra, from as little as 5 ml of Halobacterium salinarum cells, show close correspondence to that obtained from the purified purple membrane (PM), containing bacteriorhodopsin (BR) as the sole protein component. We demonstrate accurate quantification of BR accumulation by ratiometric analysis of BR (A(max) 568) and a membrane-bound cytochrome (A(max) 410).

View Article and Find Full Text PDF

The effects of glycyl-glycine and bis-trispropane buffers on the light-excited electric signals due to proton motion in the molecule were studied for the bacteriorhodopsin (bR) mutants D38R, D96N, E204Q, R227Q, D85N, D85T, R82Q/D85N, and D85N/D96N in purple membranes and for delipidated purple membrane containing the wild-type bR. The results show additional charge motion caused by the buffers in all cases. Arrhenius parameters calculated from the temperature dependence of the difference signals (with buffer minus without buffer) are similar to the parameters found for the wild-type bR in the case of these buffers: the values of the activation enthalpies are mostly in the range 25-50 kJ/mol; all the activation entropies are negative.

View Article and Find Full Text PDF

The proton uptake channel of bacteriorhodopsin as studied by a photoelectrochemical method.

Bioelectrochemistry

January 2001

Ashigara Research Laboratories, Fuji Photo Film Co., Ltd., Minamiashigara, Kanagawa, Japan.

A series of the mutant proteins (D96N, D96N/D85N, D115N, L93T, T46V, V49A) where the residues are located at the cytoplasmic domain of bacteriorhodopsin (bR) were studied photoelectrochemically and their photocurrent response characteristics at the electrode/electrolyte interface were compared with those of the wild-type bR. While the wild-type bR of normal proton pumping activity yields symmetrical cathodic (positive) and anodic (negative) responses, corresponding to proton release and proton uptake, respectively, these mutants, with the exception of D115N, showed diminished amplitudes in the negative response. This indicates retardation of proton translocation from the cytoplasmic surface to the retinal Schiff base.

View Article and Find Full Text PDF

Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR.

Biochemistry

November 2000

Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Garden City, Kouto 3-chome, Kamigori, Hyogo, Japan.

According to previous X-ray diffraction studies, the D85N mutant of bacteriorhodopsin (bR) with unprotonated Schiff base assumes a protein conformation similar to that in the M photointermediate. We recorded (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N and D85N/D96N mutants at ambient temperature to examine how conformation and dynamics of the protein backbone are altered when the Schiff base is protonated (at pH 7) and unprotonated (at pH 10). Most notably, we found that the peak intensities of three to four [3-(13)C]Ala-labeled residues from the transmembrane alpha-helices, including Ala 39, 51, and 53 (helix B) and 215 (helix G), were suppressed in D85N and D85N/D96N both from CP-MAS (cross polarization-magic angle spinning) and DD-MAS (dipolar decoupled-magic angle spinning) spectra, irrespective of the pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!