Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp. Here, we show that the Mtr1 mutant gene (mtr1-D) encodes a form of rice PDT with a point mutation in the putative allosteric regulatory region of the protein. Transformed callus lines expressing mtr1-D exhibited all the characteristics of Mtr1 callus tissue. Biochemical analysis revealed that rice PDT possesses both PDT and ADT activities, with a preference for arogenate as substrate, suggesting that it functions primarily as an ADT. The wild-type enzyme is feedback regulated by Phe, whereas the mutant enzyme showed a reduced feedback sensitivity, resulting in Phe accumulation. In addition, these observations indicate that rice PDT is critical for regulating the size of the Phe pool in plant cells. Feeding external Phe to wild-type callus tissue and seedlings resulted in Trp accumulation, demonstrating a connection between Phe accumulation and Trp pool size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2438470PMC
http://dx.doi.org/10.1105/tpc.107.057455DOI Listing

Publication Analysis

Top Keywords

rice pdt
12
phe
9
mtr1 mutant
8
phe trp
8
callus tissue
8
phe accumulation
8
accumulation
5
pdt
5
mutation rice
4
rice gene
4

Similar Publications

Large-scale analysis of the PAC domain structure of arogenate dehydratases reveals their evolutionary patterns in angiosperms.

Int J Biol Macromol

October 2024

Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China; Provincial Key Laboratory for Plant Genetics and Breeding, College of Agronomy, Sichuan Agricultural University, Chengdu 611134, China. Electronic address:

Arogenate dehydratase (ADT) is the key limiting enzyme of plant phenylalanine biosynthesis, but some ADTs display a prephenate decarboxylase/dehydratase activity-conferring (PAC) domain. The genome resources of 70 species were employed to identify genes and outline their characteristics, especially the number and type of PAC domain structures. We obtained 522 ADTs, and their size, exon number, amino acid number and putative protein isoelectric point greatly varied from 306 to 2520 bp, 1 to 15, 101 to 839 and 4.

View Article and Find Full Text PDF

Intracellular singlet oxygen (O) generation and detection help optimize the outcome of photodynamic therapy (PDT). Theranostics programmed for on-demand phototriggered O release and bioimaging have great potential to transform PDT. We demonstrate an ultrasensitive fluorescence turn-on sensor-sensitizer-RGD peptide-silica nanoarchitecture and its O generation-releasing-storing-sensing properties at the single-particle level or in living cells.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles with dual-targeting agricultural sources for enhanced cancer treatment tritherapy.

RSC Adv

June 2023

National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192.

In this study, we introduced dual-targeting folic acid (FA) and hyaluronic acid (HA) modified on the surface of rice husk mesoporous silica nanoparticles (rMSNs). The rMSNs were employed as a drug delivery system loaded with camptothecin (CPT) as a model drug, Eu ions as a photosensitizer for photodynamic therapy (PDT), bismuth (Bi) for photothermal therapy (PTT), and Gd ions for magnetic resonance imaging (MRI) to develop novel nanoparticles, rMSN-EuGd-Bi@CPT-HA-FA, with dual-targeted function and triple therapy for cancer treatment. The results of the cell cytotoxicity experiment showed that the A549 cancer cells had a survival rate of approximately 35% when treated with 200 μg mL of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 15 min.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a promising treatment for certain cancers that proceeds sensitization of ground state O to generate reactive O. Classic macrocyclic tetrapyrrole ligand scaffolds, such as porphyrins and phthalocyanines, have been studied in detail for their O photosensitization capabilities. Despite their compelling photophysics, these systems have been limited in PDT applications because of adverse biological side effects.

View Article and Find Full Text PDF

Diimine metal complexes have significant relevance in the development of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) applications. In particular, complexes of the TAP ligand (1,4,5,8-tetraazaphenanthrene) are known to lead to photoinduced oxidation of DNA, while TAP- and triazole-based complexes are also known to undergo photochemical ligand release processes relevant to PACT. The photophysical and photochemical properties of heteroleptic complexes [Ru(TAP)(btz)] (btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, = 1 (), 2 ()) have been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!