Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443647 | PMC |
http://dx.doi.org/10.1074/jbc.M709685200 | DOI Listing |
Inorg Chem
May 2022
Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen , The Netherlands.
Recent desires to develop environmentally benign procedures for electrophilic chlorinations have encouraged researchers to take inspiration from nature. In particular, the enzyme chloroperoxidase (CPO), which is capable of electrophilic chlorinations through the umpolung of chloride by oxidation with hydrogen peroxide (HO), has received lots of attention. CPO itself is unsuitable for industrial use because of its tendency to decompose in the presence of excess HO.
View Article and Find Full Text PDFJ Am Chem Soc
July 2019
Department of Chemistry , Johns Hopkins University, Baltimore , Maryland 21218 , United States.
Cytochrome oxidase (CO) catalyzes the reduction of dioxygen to water utilizing a heterobinuclear active site composed of a heme moiety and a mononuclear copper center coordinated to three histidine residues, one of which is covalently cross-linked to a tyrosine residue via a post-translational modification (PTM). Although this tyrosine-histidine moiety has functional and structural importance, the pathway behind this net oxidative C-N bond coupling is still unknown. A novel route employing an iron(III) -substituted isoporphyrin derivative, isoelectronic with Cmpd-I ((Por)Fe═O), is for the first time proposed to be a key intermediate in the Tyr-His cofactor biogenesis.
View Article and Find Full Text PDFDalton Trans
February 2016
Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh-791109, India.
The reactions of iron(III) hydroxyisoporphyrin, chloro[5-(hydroxy)-5,10,15,20-tetrakis(4-methyl)-5,21H-porphinato]iron(III) [Fe(4-Me-HTPI)(Cl)](-), 1 and chloro[5-(hydroxy)-5,10,15,20-tetrakis(4-methoxy-5,21H-porphinato]iron(III) [Fe(4-OMe-HTPI)(Cl)](-), 2 with different O(-), N(-) and S(-) nucleophiles have been performed to understand the reactivity of iron isoporphyrins with nucleophiles. The treatment of iron(III) hydroxy isoporphyrin with alcohols is found to form ring opened 19-benzoyl-1-alkoxy-bilin iron complexes. When alkyl amines were used the formation of ring opened 19-benzoyl-1-alkylamine-bilin iron complexes was observed, but heterocyclic N-nucleophiles such as pyridine and imidazole form benzoyl bilinone iron complexes.
View Article and Find Full Text PDFDalton Trans
September 2015
Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh-791109, India.
An overview of the chemistry of isoporphyrin, the tautomer of porphyrin, whose existence was predicated by the Noble laureate Woodward, is presented with emphasis on hydroxy-isoporphyrins of tetra-aryl derivatives. The chemistry of metalloisoporphyrin has been discussed since the discovery of the first metallo-isoporphyrin by Dolphin and co-workers, as no comprehensive article is available on this beautiful macrocycle. Attention is paid to the possible applications of metalloisoporphyrins as photosensitizers in photodynamic therapy, as a near infra-red dye and as a reactive agent for different atom transfer reactions.
View Article and Find Full Text PDFJ Am Chem Soc
November 2013
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.
The selective oxidation of the α-position of two heme-Fe(III) tetraarylporphryinate complexes occurs when water(hydroxide) attacks their oxidized Cmpd I-type equivalents, high-valent Fe(IV)═O π-cation radical species ((P(+•))Fe(IV)═O). Stepwise intermediate formation occurs, as detected by UV-vis spectroscopic monitoring or mass spectrometric interrogation, being iron(III) isoporphyrins, iron(III) benzoyl-biliverdins, and the final verdoheme-like products. Heme oxygenase (HO) enzymes could proceed through heterolytic cleavage of an iron(III)-hydroperoxo intermediate to form a transient Cmpd I-type species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!