Comparison of [3H]ryanodine receptors and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum.

J Pharmacol Exp Ther

Department of Veterinary Pharmacology and Toxicology, University of California, Davis 95616.

Published: March 1991

Sarcoplasmic reticulum (SR) vesicles prepared from rat ventricle muscle are isolated, and their [3H]ryanodine-binding and calcium transport properties are studied in detail under active loading conditions in the presence of pyrophosphate. Experiments are performed in tandem with rabbit skeletal SR under identical conditions to allow direct comparisons of the mechanisms by which activators and inhibitors influence the calcium release channel. Ca(++)-induced Ca++ release is demonstrated with both preparations and the cardiac channel is about 1.5-fold more sensitive to activation by Ca++, which is in excellent quantitative agreement with the ability of Ca++ to activate [3H]ryanodine-binding sites. The cardiac and skeletal receptors show major quantitative differences with respect to sensitivity to pharmacologic modulators, cations and pH. The inhibitors ruthenium red, Mg++ and neomycin are significantly more potent in inhibiting the skeletal receptor, whereas the activators daunorubicin and caffeine are significantly more potent towards the cardiac receptor. The ATP analog, beta,gamma-methyleneadenosine 5'-triphosphate, enhances the binding of [3H]ryanodine to the high-affinity site in skeletal SR by a factor of 4 but has a negligible effect on the cardiac receptor, although at suboptimal Ca++ for the binding of ryanodine, beta,gamma-methyleneadenosine 5'-triphosphate activates the cardiac receptor to a greater extent. High levels of salt (1 M NaCl) enhance the rate of [3H]ryanodine association with its binding sites in both preparations, although they selectively reduce the binding-site capacity in skeletal SR due to a failure to maintain a stable equilibrium. Although high- and low-affinity binding of [3H]ryanodine have a similar response to changing pH, the skeletal receptors are significantly more sensitive to pH.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source

Publication Analysis

Top Keywords

cardiac receptor
12
ca++ release
8
rabbit skeletal
8
sarcoplasmic reticulum
8
skeletal receptors
8
betagamma-methyleneadenosine 5'-triphosphate
8
binding [3h]ryanodine
8
skeletal
7
cardiac
6
ca++
5

Similar Publications

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Aims: To study differences in cardiovascular prevention and hypertension management in primary care in men and women, with comparisons between public and privately operated primary health care (PHC).

Methods: We used register data from Region Stockholm on collected prescribed medication and registered diagnoses, to identify patients aged 30 years and above with hypertension. Age-adjusted logistic regression was used to calculate odds ratios (ORs) with 99% confidence intervals (99% CIs) using public PHC centers as referents.

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Rationale & Objective: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) improve cardiac and kidney outcomes in patients with diabetes; however their efficacy in individuals with reduced estimated glomerular filtration rate (eGFR) is uncertain. This study evaluated the effects of GLP-1RAs on kidney and cardiovascular (CV) outcomes in patients with chronic kidney disease (CKD).

Study Design: Systematic review and meta-analysis of randomized controlled trials (RCTs) reported through May 25, 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!