Dietary restriction feeding extends survival in a range of species but a detailed understanding of the underlying mechanism is lacking. There is interest therefore in identifying a more targeted approach to replicate this effect on survival. We report that in rats dietary supplementation with alpha-lipoic acid, has markedly differing effects on lifetime survival depending upon the dietary history of the animal. When animals are switched from DR feeding to ad libitum feeding with a diet supplemented with alpha-lipoic acid, the extended survival characteristic of DR feeding is maintained, even though the animals show accelerated growth. Conversely, switching from ad libitum feeding a diet supplemented with alpha-lipoic acid to DR feeding of the non-supplemented diet, blocks the normal effect of DR to extend survival, even after cessation of lipoic acid supplementation. Unlike the dynamic effect of switching between DR and ad libitum feeding with a non-supplemented diet where the subsequent survival trajectory is determined by the new feeding regime, lipoic acid fixes the survival trajectory to that established by the initial feeding regime. Ad libitum feeding a diet supplemented with lipoic acid can therefore act as mimetic of DR to extend survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mad.2008.04.004 | DOI Listing |
Biomacromolecules
December 2024
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Department of Physiology, Medical Specialization Training Center (TUSMER), 06230 Ankara, Türkiye.
This study aimed to investigate the protective effects of vitamin B complex and alpha-lipoic acid (ALA) pre-treatments on hepatic ischemia-reperfusion injury (IRI) in rats, focusing on their potential to enhance antioxidant defense mechanisms and reduce post-ischemic liver damage. Thirty male Wistar albino rats were divided into four groups: sham group (n = 10), IRI group (n = 10), vitamin B group (n = 10), vitamin B + ALA group (n = 10). In the IRI, vitamin B, and vitamin B + ALA groups, the rats underwent 45 min of hepatic ischemia followed by 60 min of reperfusion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (HS) at inflammatory sites. Nanozyme-mediated ROS and HS scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging CuO nanoparticle and first explored its HS scavenging capacity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Mechanical Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu City 610106, China. Electronic address:
Chitosan is a bio-based material that is more environmentally friendly than traditional petroleum-based materials, but its biofilms often suffer from brittleness and limited antioxidant and antibacterial properties. To overcome these challenges, chemically modified chitosan is a key solution. Herein, a novel CS-LA/CHA films were prepared through a radical reaction of chitosan (CS), lipoic acid/chalcone derivative (LA/CHA) and N,N-methylene bisacrylamide (MBA).
View Article and Find Full Text PDFFront Neurosci
December 2024
Office of Research and Innovation, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
Oxidative stress, caused by an imbalance between the generation of reactive oxygen species (ROS) and the body's intrinsic antioxidant defenses, plays a critical role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. Beyond these conditions, recent evidence indicates that dysregulated redox balance is implicated in neuropsychiatric disorders, including schizophrenia, major depressive disorder, and anxiety disorders. Preclinical and clinical studies have demonstrated the potential of antioxidants, such as N-acetylcysteine, sulforaphane, alpha-lipoic acid, L-carnitine, ascorbic acid, selenocompounds, flavones and zinc, in alleviating neuropsychiatric symptoms by mitigating excitotoxicity, enhancing synaptic plasticity, reducing microglial overactivation and promoting synaptogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!