Phytoextraction has revealed great potential, however it is limited by the fact that plants need time and nutrient supply and have a limited metal uptake capacity. Although the use of synthetic chelators, such as EDTA, enhances heavy metal extraction, it also produces the negative side effects of high phytotoxicity, as well as leaching of essential metals. The aim of this research was to investigate the application of wool, in mobilising metals and in improving the phytoextraction of metals-contaminated soil. We performed column experiments with 14 d and 7 d partially hydrolysed wool as chelating agent on a silty-loamy sand agricultural soil. In the column experiment the 14 d wool hydrolysate mobilised 68% of Cu in soil, whereas in the case of Cd it mobilised 5.5%. The model plant selected for the phytoextraction experiments was tobacco (Nicotiana tabacum). The plant uptake of Cd and Cu, assisted by the application of 6.6 g kg(-1) wool hydrolysate was increased by 30% in comparison to the control plants. The application of 13.3 g kg(-1) wool hydrolysate enhanced the Cu uptake by up to 850%. Moreover, high leaching probability frequently observed when applying chelating agents, such as EDTA or ethylene diamine disuccinate (EDDS), were not detected. The use of hydrolysed wool therefore merits further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2008.03.063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!