The complete nucleotide sequence of gene 3 of pneumonia virus of mice has been determined, and the 5' end of the mRNA mapped using a modification of the polymerase chain reaction technique. The gene contains a single open reading frame, beginning with a 5'-proximal AUG initiation codon, encoding a polypeptide with a predicted Mr of 43141. Expression of the gene 3 protein in Escherichia coli and in vitro showed that it reacted with virus-specific antiserum and comigrated with the major nucleocapsid (N) polypeptide. The predicted amino acid sequence has extensive identity with that of the N protein of human respiratory syncytial virus. Comparisons with the amino acid sequences of N proteins of other paramyxoviruses, vesicular stomatitis virus and Ebola virus suggest that these proteins may have retained much of the same structure. These regions of conserved structure would most likely have the common functions of RNA binding and protein/protein interactions in the virus nucleocapsid.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-72-3-677DOI Listing

Publication Analysis

Top Keywords

major nucleocapsid
8
gene pneumonia
8
pneumonia virus
8
virus mice
8
polypeptide predicted
8
amino acid
8
virus
6
sequence
4
sequence major
4
nucleocapsid
4

Similar Publications

Caliciviruses are a diverse group of non-enveloped, positive-sense RNA viruses with a wide range of hosts and transmission routes. Norovirus is the most well-known member of the ; the acute gastroenteritis caused by human norovirus (HuNoV), for example, frequently results in closures of hospital wards and schools during the winter months. One area of calicivirus biology that has gained increasing attention over the past decade is the conformational flexibility exhibited by the protruding (P) domains of the major capsid protein VP1.

View Article and Find Full Text PDF

[Genomic Characterization of SARS-CoV-2 Isolates Obtained from Antalya, Türkiye].

Mikrobiyol Bul

October 2024

The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands.

As the number of coronavirus diseases-2019 (COVID-19) cases have decreased and measures have started to be implemented at an individual level rather than in the form of social restrictions, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) still maintains its importance and has already taken its place in the spectrum of agents investigated in multiplex molecular test panels for respiratory tract infections in routine diagnostic use. In this study, we aimed to present mutation analysis and clade distribution of whole genome sequences from randomly selected samples that tested positive with SARS-CoV-2 specific real-time reverse transcription polymerase chain reaction (rRT-PCR) test at different periods of the pandemic in our laboratory with a commercial easy-to-use kit designed for next-generation sequencing systems. A total of 84 nasopharyngeal/oropharyngeal swab samples of COVID-19 suspected patients which were sent for routine diagnosis to the medical microbiology laboratory and detected as SARSCoV-2 RNA positive with rRT-PCR were randomly selected from different periods for sequence analysis.

View Article and Find Full Text PDF

Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms.

View Article and Find Full Text PDF

The Basic Architecture of Viruses.

Subcell Biochem

December 2024

Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.

Viruses are elegant macromolecular assemblies and constitute a paradigm of the economy of genomic resources; they must use simple general principles to complete their life cycles successfully. Viruses need only one or a few different capsid structural subunits to build an infectious particle, which is possible for two reasons: extensive use of symmetry and built-in conformational flexibility. Although viruses come in many shapes and sizes, two major symmetric assemblies are found: icosahedral and helical.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding how IgG antibody levels against SARS-CoV-2 behave over time in a group of people from Puerto Rico, especially in relation to vaccination and prior infections.
  • Researchers conducted a longitudinal analysis with participants providing regular samples for testing from June 2020 to August 2022, allowing them to assess how antibody levels changed based on factors like vaccination status and the timing of infections.
  • Findings revealed that a significant majority of participants showed increased antibody prevalence by the end of the study, with vaccinations contributing substantially to IgG levels, while a third booster dose was effective in enhancing and prolonging antibody response.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!