AI Article Synopsis

  • There are various parasite species that have different responses to antiparasite drugs, highlighting the need for models that can predict drug activity across multiple species.
  • Previous studies developed single models (mt-QSAR) for predicting antimicrobial activity in fungi and bacteria, enabling the construction of drug-drug similarity networks.
  • This current study expands on that concept by creating a multi-task learning model (mt-QSAR) for over 500 antiparasite drugs, achieving high classification accuracy and facilitating virtual screening for new active compounds.

Article Abstract

Several pathogen parasite species show different susceptibilities to different antiparasite drugs. Unfortunately, almost all structure-based methods are one-task or one-target Quantitative Structure-Activity Relationships (ot-QSAR) that predict the biological activity of drugs against only one parasite species. Consequently, multi-tasking learning to predict drugs activity against different species by a single model (mt-QSAR) is vitally important. In the two previous works of the present series we reported two single mt-QSAR models in order to predict the antimicrobial activity against different fungal (Bioorg. Med. Chem.2006, 14, 5973-5980) or bacterial species (Bioorg. Med. Chem.2007, 15, 897-902). These mt-QSARs offer a good opportunity (unpractical with ot-QSAR) to construct drug-drug similarity Complex Networks and to map the contribution of sub-structures to function for multiple species. These possibilities were unattended in our previous works. In the present work, we continue this series toward other important direction of chemotherapy (antiparasite drugs) with the development of an mt-QSAR for more than 500 drugs tested in the literature against different parasites. The data were processed by Linear Discriminant Analysis (LDA) classifying drugs as active or non-active against the different tested parasite species. The model correctly classifies 212 out of 244 (87.0%) cases in training series and 207 out of 243 compounds (85.4%) in external validation series. In order to illustrate the performance of the QSAR for the selection of active drugs we carried out an additional virtual screening of antiparasite compounds not used in training or predicting series; the model recognized 97 out of 114 (85.1%) of them. We also give the procedures to construct back-projection maps and to calculate sub-structures contribution to the biological activity. Finally, we used the outputs of the QSAR to construct, by the first time, a multi-species Complex Networks of antiparasite drugs. The network predicted has 380 nodes (compounds), 634 edges (pairs of compounds with similar activity). This network allows us to cluster different compounds and identify on average three known compounds similar to a new query compound according to their profile of biological activity. This is the first attempt to calculate probabilities of antiparasitic action of drugs against different parasites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.04.068DOI Listing

Publication Analysis

Top Keywords

complex networks
12
parasite species
12
antiparasite drugs
12
biological activity
12
drugs
9
previous works
8
bioorg med
8
compounds
7
species
6
activity
6

Similar Publications

We study image segmentation using spatiotemporal dynamics in a recurrent neural network where the state of each unit is given by a complex number. We show that this network generates sophisticated spatiotemporal dynamics that can effectively divide an image into groups according to a scene's structural characteristics. We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images.

View Article and Find Full Text PDF

Comprehensive characterization of the transcriptional landscape in Alzheimer's disease (AD) brains.

Sci Adv

January 2025

Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.

Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events.

View Article and Find Full Text PDF

We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.

View Article and Find Full Text PDF

Aging in a weighted ensemble of excitable and self-oscillatory neurons: The role of pairwise and higher-order interactions.

Chaos

January 2025

International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Bunkyo Ku, Tokyo 113 8654, Japan.

We investigate the aging transition in networks of excitable and self-oscillatory units as the fraction of inherently excitable units increases. Two network topologies are considered: a scale-free network with weighted pairwise interactions and a two-dimensional simplicial complex with weighted scale-free pairwise and triadic interactions. Without triadic interactions, the aging transition from collective oscillations to oscillation death (inhomogeneous stationary states) can occur either suddenly or through an intermediate state of partial oscillation.

View Article and Find Full Text PDF

Directed recurrence networks for the analysis of nonlinear and complex dynamical systems.

Chaos

January 2025

Department of Management Science and Technology, Tohoku University, Sendai 980-8579, Japan.

Complex network approaches have been emerging as an analysis tool for dynamical systems. Different reconstruction methods from time series have been shown to reveal complicated behaviors that can be quantified from the network's topology. Directed recurrence networks have recently been suggested as one such method, complementing the already successful recurrence networks and expanding the applications of recurrence analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!