In any population in which resources are limiting, the allocation of resources toward increased reproductive success may generate costs to survival [1-8]. The relationship between a sexually selected trait and fitness will therefore represent a balance between its relative associations with fecundity versus viability [3, 6, 7]. Because the risk of mortality in a population is likely to be heavily determined by ecological conditions, survival costs may vary as a function of the prevailing environment [7]. As a result, for populations experiencing heterogeneous ecological conditions, there may not be a single optimal level of allocation toward reproduction versus survival [9]. Here, we show that early viability and fecundity selection act in opposing directions on a secondary sexual trait and that their relative magnitude depends upon ecological conditions, generating fluctuating selection. In a wild population of Soay sheep (Ovis aries), phenotypic and genetic associations between male horn growth and lifetime reproductive success were positive under good environmental conditions (because of increased breeding success) and negative under poor environmental conditions (because of reduced survival). In an unpredictable environment, high allocation to early horn growth is a gamble that will only pay off if ensuing conditions are favorable. Such fluctuating selection may play an important role in preventing the erosion of genetic variance in secondary sexual traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2008.04.059 | DOI Listing |
ACS Chem Neurosci
January 2025
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Endoplasmic reticulum (ER) stress and autophagy (ER-phagy) occurring in nerve cells are crucial physiological processes closely associated with Alzheimer's disease (AD). Visualizing the two processes is paramount to advance our understanding of AD pathologies. Among the biomarkers identified, peroxynitrite (ONOO) emerges as a key molecule in the initiation and aggravation of ER stress and ER-phagy, highlighting its significance in the underlying mechanisms of the two processes.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.
C aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
University of Victoria, Civil Engineering, ECS Building, Victoria, British Columbia V8W 2Y2, Canada.
Regulated disinfection byproducts (e.g., trihalomethanes and haloacetic acids) in drinking water networks fluctuate spatially and temporally, depending on water sources and treatment practices with higher concentrations during the summer.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Propofol, a widely used intravenous anesthetic agent, requires accurate monitoring to ensure therapeutic efficacy and prevent oversedation. Recent developments in modern analytical instrumentation have led to significant breakthroughs in on-line analysis of exhaled breath. This review discusses several sophisticated analytical methods that have been explored for noninvasive, real-time monitoring of propofol concentrations, including proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, and gas chromatography coupled to surface acoustic wave sensors.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada. Electronic address:
Marine pollution poses significant risks to both marine ecosystems and human health, requiring effective monitoring and control measures. This study presents the Ocean Pollution Monitoring System (OPMS), a web application designed to visualize the seasonal and annual fluctuations of marine pollutants along coastal regions in Canada. The pollutants include fecal coliform and biotoxins such as paralytic shellfish poisoning (PSP), and amnesic shellfish poisoning (ASP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!