The major model animal of optic nerve regeneration in fish is goldfish. A closely related zebrafish is the most popular model system for genetic and developmental studies of vertebrate central nervous system. A few challenging works of optic nerve regeneration have been done with zebrafish. However, knowledge concerning the long term of optic nerve regeneration apparently lacks in zebrafish. In the present study, therefore, we followed changes of zebrafish behavior and phosphorylated form of growth-associated protein 43 (phospho-GAP43) expression in the zebrafish retina over 100 days after optic nerve transection. Optomotor response was fast recovered by 20-25 days after axotomy whereas chasing behavior (a schooling behavior) was slowly recovered by 80-100 days after axotomy. The temporal pattern of phospho-GAP43 expression showed a biphasic increase, a short-peak (12 folds) at 1-2 weeks and a long-plateau (4 folds) at 1-2 months after axotomy. The recovery of optomotor response well correlated with projection of growing axons to the tectum, whereas the recovery of chasing behavior well correlated with synaptic refinement of retinotectal topography. The present data strongly suggest that phospho-GAP43 plays an active role in both the early and late stages of optic nerve regeneration in fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2008.03.008DOI Listing

Publication Analysis

Top Keywords

optic nerve
24
nerve regeneration
16
protein phospho-gap43
8
zebrafish retina
8
regeneration fish
8
phospho-gap43 expression
8
optomotor response
8
days axotomy
8
chasing behavior
8
folds 1-2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!