The deposition of beta-amyloid peptides (Abeta42 and Abeta40) in neuritic plaques is one of the hallmarks of Alzheimer's disease (AD), and genes modulating their brain levels and neuronal effects could result in future disease modifying therapies. The causal association of candidate targets with AD is of paramount importance in current drug discovery, as a lack of efficacy of many candidate drugs is often due to inadequate validation of their pharmacological target. In Alzheimer's as well as in other neurodegenerative diseases, in vitro target validation is hampered by the difficulty of transfecting primary neuronal cultures and assaying the effects of genes on neuronal viability. Here we describe a rapid, sensitive and simple reporter-based assay for the validation of genes putatively associated with Abeta-mediated neurotoxicity, which can in principle be extended to the validation of targets in the context of other neuronal insults. The assay is suitable for the generation of robust and reproducible data in primary neuronal cultures allowing the dissection at a molecular level of complex pathways activated by the toxic insult in a cellular context that more closely represents the real disease situation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2008.03.018 | DOI Listing |
PLoS One
January 2025
Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.
View Article and Find Full Text PDFNeurosci Bull
January 2025
CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
Bio Protoc
January 2025
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Primary neuronal culture and transient transfection offer a pair of crucial tools for neuroscience research, providing a controlled environment to study the behavior, function, and interactions of neurons in vitro. These cultures can be used to investigate fundamental aspects of neuronal development and plasticity, as well as disease mechanisms. There are numerous methods of transient transfection, such as electroporation, calcium phosphate precipitation, or cationic lipid transfection.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Glaucoma Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Qazvin Square, Tehran, Iran.
Background: To compare structural and vascular parameters between advanced pseudoexfoliation glaucoma (PXG) and primary open-angle glaucoma (POAG).
Methods: One hundred and six eyes of 81 patients were enrolled in this cross-sectional study. All patients underwent complete ophthalmic examination and measurement of the thickness of the peripapillary retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC).
Mol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!