Background: Ximelagatran, the first oral direct thrombin inhibitor, was shown to be an effective antithrombotic agent but was associated with potential liver toxicity after prolonged administration.

Objectives And Methods: The aim of the EXTEND study was to assess safety and efficacy of extended administration (35 days) of ximelagatran or enoxaparin for the prevention of venous thromboembolism after elective hip replacement and hip fracture surgery. A follow-up period, including assessment of liver enzymes (in particular alanine aminotransferase; ALAT), until post-operative day 180 was planned, with visits at days 56 and 180.

Results: Randomization and administration of study drugs were stopped following a report of serious liver injury occurring 3 weeks after completion of ximelagatran treatment. At the time of study termination, 1158 patients had been randomized and 641 had completed the 35-day treatment; with 303 ximelagatran and 265 enoxaparin patients remaining in the study through to the day 56 follow-up visit. Overall, 58 patients showed an ALAT increase to >2x upper limit of normal: 31 treated with enoxaparin, 27 with ximelagatran. Three ximelagatran patients also showed symptoms potentially related to liver toxicity. Eleven ximelagatran patients showed an ALAT increase after study treatment ended. The clinical development of ximelagatran was terminated and the drug withdrawn from the market. Evaluation of the relative efficacy of the two treatments as specified in the protocol was impossible due to the premature termination of the study.

Conclusions: Prolonged administration of ximelagatran was associated with an increased risk of liver toxicity. In a substantial proportion of patients, ALAT increase occurred after treatment withdrawal. The findings seen with ximelagatran should be considered when designing studies with new antithrombotic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2008.02.017DOI Listing

Publication Analysis

Top Keywords

liver toxicity
12
patients alat
12
alat increase
12
ximelagatran
11
antithrombotic agents
8
extend study
8
ximelagatran patients
8
study
6
patients
6
liver
5

Similar Publications

Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis.

Environ Sci Technol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.

Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms.

View Article and Find Full Text PDF

Methomyl (MET), a universally used insecticide, has many adverse effects on various organs in both humans and animals including the liver, kidneys, and heart. Betaine (BET), a natural antioxidant, has a protective role against many toxicants-induced cardiovascular disorders. The present study was designed to elucidate the molecular mechanistic way underlying the mitigating effect of BET against MET-induced cardiopulmonary injury and inflammation in rats.

View Article and Find Full Text PDF

Fluorinated liquid crystal monomers (FLCMs) are widely employed in liquid crystal display (LCD) panels. As emerging environmental contaminants with persistent, bioaccumulative, and toxic properties, FLCMs were proven to accumulate in liver, raising great concern regarding potential hepatotoxicity. 1-Ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl) benzene (EDPrB), as one representative FLCM, was chosen to investigate the hepatotoxicity in adult zebrafish (Danio rerio) at environmentally relevant concentrations (1, 10, and 100 μg/L) with long-term exposure (21 days).

View Article and Find Full Text PDF

Quantitative study on hepatic genotoxicity of neodymium and its molecular mechanisms based on Benchmark Dose method.

Front Pharmacol

December 2024

Institute of Chemical Toxicity Testing/NHC Specialty Laboratory of Food, Safety Risk Assessment and Standard Development/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.

Introduction: Neodymium, a rare earth element, has been shown to induce genotoxicity in mice, but the molecular mechanisms behind this effect are not fully understood. This study aims to investigate the genotoxic effects of intragastric administration of neodymium nitrate (Nd(NO)) over 28 consecutive days and to elucidate the underlying molecular mechanisms.

Methods: We detected the content of neodymium in mouse liver tissue using ICP-MS and assessed the percentage of tail DNA in mouse hepatocytes using the alkaline comet assay to evaluate genotoxicity.

View Article and Find Full Text PDF

Background: In recent years, with the increase of antibiotic resistance, tigecycline has attracted much attention as a new broad-spectrum glycylcycline antibiotic. It is widely used in the treatment of complex skin and soft tissue infections, complex abdominal infections and hospital-acquired pneumonia by inhibiting bacterial protein synthesis. Tigecycline can exhibit significant time-dependent bactericidal activity, and its efficacy is closely related to pharmacokinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!