Polypeptide hormones and growth factors bind to cell surface receptors and are internalized by receptor-mediated endocytosis. Both [125I]insulin and [125I]epidermal growth factor (EGF) are internalized to a much greater extent than [125I]glucagon in freshly isolated rat hepatocytes. All three ligands bind initially and preferentially to the microvillous surface of the hepatocyte, but only [125I]insulin and [125I]EGF undergo significant redistribution to the nonvillous surface of the cell. Thus, the degree of lateral mobility of the ligand receptor complex is strongly correlated with the extent of internalization of the ligand. Since the beta-subunit of the insulin and the EGF receptors span the plasma membrane only once and both receptors are autophosphorylated, it is possible that these are important determinants of the receptor mobility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo-128-4-2136 | DOI Listing |
Nanotechnology
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2100, Denmark.
NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Engineered natural killer (NK) cells eliminate cancer cells by overexpressing a chimeric antigen receptor, producing highly efficient and safe NK cell therapies. This study investigated the polyplex formulation for the fusion protein GreenLantern-natural killer group 2D (NKG2D) mRNA to evaluate its delivery efficacy into NK cells, wherein NKG2D on the surface of NK cells recognized its counterpart NKG2D ligands on cancer cells. Amphiphilic polyaspartamide derivatives Chol-PAsp(DET/CHE) were prepared by adding cyclohexylethylamine (CHE) and diethylenetriamine (DET) in the side chains and cholesterol (Chol) at the α-terminus to enhance endosomal escapability and optimize hydrophobicity.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
January 2025
Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; email:
G protein-coupled receptors (GPCRs) represent the largest family of plasma membrane proteins targeted for therapeutic development. For decades, GPCRs were investigated as monomeric entities during analysis of their pharmacology or signaling and during drug development. However, a considerable body of evidence now indicates that GPCRs function as dimers or higher-order oligomers.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; email:
Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding , a human coronary artery disease risk locus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!