Background And Purpose: Success in the prevention of urinary device infections has been elusive, largely due to multiple bacterial attachment strategies and the development of urinary conditioning films. We investigated a novel anti-fouling coating consisting of mussel adhesive protein mimics conjugated to polyethylene glycol (mPEG-DOPA(3)) for its potential to resist conditioning film formation and uropathogen attachment in human urine.
Methods: Model TiO(2) -coated silicon disks ( approximately 75 mm(2)) were either coated with mPEG-DOPA(3) or left uncoated and sterilized using ethylene oxide gas. For bacterial attachment experiments, coated and uncoated surfaces were separately challenged with bacterial strains comprising six major uropathogenic species for 24 hours at 37 degrees C in human pooled urine. Starting inoculum for each strain was 10(5) CFU/mL and 0.5 mL was used per disk. Following incubation, the disks were thoroughly rinsed in phosphate buffered saline to remove non-adherent and weakly-adherent organisms and cell scrapers were employed to dislodge those that were firmly attached. Adherent bacteria were quantitated using dilution plating. Representative disks were also examined using scanning electron microscopy, energy dispersive x-ray analysis, and live/dead viability staining.
Results: The mPEG-DOPA(3) coating significantly resisted the attachment of all uropathogens tested, with a maximum >231-fold reduction in adherence for Escherichia coli GR-12, Enterococcus faecalis 23241, and Proteus mirabilis 296 compared to uncoated TiO(2) disks. Scanning electron microscopy and viability staining analyses also reflected these results and demonstrated the ability of the coating to resist urinary constituent adherence as well.
Conclusion: Model surfaces coated with mPEG-DOPA(3) strongly resisted both urinary film formation and bacterial attachment in vitro. Future in vitro and in vivo studies will be conducted to assess whether similar findings can be demonstrated when these polymer coatings are applied to urologic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/end.2008.0049 | DOI Listing |
Biofilm
June 2025
Infectious Bacterial Diseases Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA.
The genus comprises unique atypical spirochete bacteria that includes the etiological agent of leptospirosis, a globally important zoonosis. Biofilms are microecosystems composed of microorganisms embedded in a self-produced matrix that offers protection against hostile factors. Leptospires form biofilms in rice fields and unsanitary urban areas, and while colonizing rodent kidneys.
View Article and Find Full Text PDFInfect Disord Drug Targets
December 2024
Department of Pharmacology and Biotechnology, Eminent College of Pharmaceutical Technology, Barbaria, Barasat, Kolkata, 700126, West Bengal, India.
Multicellular surface-attached populations of bacteria embedded in the extracellular matrix are known as biofilms. Bacteria generally preferred to grow as biofilms. Quorum sensing (QS), detection of density of cell population through gene regulation, has been found to play an important role in the production of biofilms.
View Article and Find Full Text PDFBiofouling
January 2025
Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México.
Biofilms are bacterial communities encapsulated in a self-produced extracellular polymeric matrix comprising carbohydrates, proteins, lipids, and DNA. This matrix provides structural integrity while significantly enhancing bacterial antibiotic resistance, presenting substantial disinfection challenges. The persistence of biofilm-associated infections and foodborne outbreaks underscores the need for more effective disinfection strategies.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 Route de Narbonne, Toulouse, 31400, France.
Bacterial resistance is gaining ground and novel, unconventional strategies are required to improve antibiotic treatments. As a synthetic analog of planktonic bacilli, the natural bacterial swimmers that can penetrate bacterial biofilms, ultra-short propelling magnetic nanochains are presented as bioinspired magnetic nanorobots, enhancing the antibiotic treatment in biofilm-forming Staphylococcus epidermidis. Propelling nanochains, activated by a low intensity (<20 mT) and low frequency (<10 Hz) rotating magnetic field (RMF), prompt the otherwise resistant biofilm-forming bacteria to become sensitive to methicillin, resulting in the killing of 99.
View Article and Find Full Text PDFSci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!